Josh Eisner

The University of Arizona, Tucson, Arizona, United States

Are you Josh Eisner?

Claim your profile

Publications (20)

  • [Show abstract] [Hide abstract] ABSTRACT: We present Karl G. Janksy Very Large Array (VLA) 1.3 cm, 3.6 cm, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster. We mosaicked 34 square arcminutes at 1.3 cm, 70 square arcminutes at 3.6 cm and 109 square arcminutes at 6 cm, containing 778 near-infrared detected YSOs and 190 HST-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source we fit a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from sub-millimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify variability of our sources.
    Article · Aug 2016 · The Astrophysical Journal
  • Jordan M. Stone · Josh Eisner · Andy Skemer · [...] · Alfio Puglisi
    [Show abstract] [Hide abstract] ABSTRACT: L-band spectroscopy is a powerful probe of cool low-gravity atmospheres: The P, Q, and R branch fundamental transitions of methane near 3.3 $\mu$m provide a sensitive probe of carbon chemistry; cloud thickness modifies the spectral slope across the band; and H$_{3}^{+}$ opacity can be used to detect aurorae. Many directly imaged gas-giant companions to nearby young stars exhibit L-band fluxes distinct from the field population of brown dwarfs at the same effective temperature. Here we describe commissioning the L-band spectroscopic mode of Clio2, the 1-5 $\mu$m instrument behind the Magellan adaptive-optics system. We use this system to measure L-band spectra of directly imaged companions. Our spectra are generally consistent with the parameters derived from previous near-infrared spectra for these late M to early L type objects. Therefore, deviations from the field sequence are constrained to occur below 1500 K. This range includes the L-T transition for field objects and suggests that observed discrepancies are due to differences in cloud structure and CO/CH$_{4}$ chemistry.
    Article · Aug 2016 · The Astrophysical Journal
  • Steph Sallum · Josh Eisner · Laird M. Close · [...] · Marco Xomperio
    [Show abstract] [Hide abstract] ABSTRACT: Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.
    Conference Paper · Aug 2016
  • Jordan M. Stone · Andrew J. Skemer · Kaitlin M. Kratter · [...] · Kimberly Ward-Duong
    [Show abstract] [Hide abstract] ABSTRACT: Recently, Gauza et al. (2015) reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion's absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age $\sim300$ Myr the A and B components each have a mass of $64.6^{+0.8}_{-2.0}~M_{\mathrm{Jup}}$, and the b component has a mass of $11.2^{+9.7}_{-1.8}$, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of $17.2\pm2.6$ pc and the parallax distance of $12.7\pm1.0$ pc. At 12.7 pc VHS1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particular, the mass of the b component increases well above the deuterium burning limit to $\sim35~M_{\mathrm{Jup}}$ and the mass of each binary component increases to $73^{+20}_{-17}~M_{\mathrm{Jup}}$. At 17.1 pc, the UVW kinematics of the system are consistent with membership in the AB~Dor moving group. The architecture of the system resembles a hierarchical stellar multiple suggesting it formed via an extension of the star-formation process to low masses. Continued astrometric monitoring will resolve this distance uncertainty and will provide dynamical masses for a new benchmark system.
    Article · Jan 2016
  • [Show abstract] [Hide abstract] ABSTRACT: As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. While there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar System's Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we were able to fit GJ 504 b's unusual spectral energy distribution for the first time. We find that GJ 504 b is well-fit by models with the following parameters: T_eff=544+/-10 K, g<600 m/s^2, [M/H]=0.60+/-0.12, cloud opacity parameter of f_sed=2-5, R=0.96+/-0.07 R_Jup, and log(L)=-6.13+/-0.03 L_Sun, implying a hot start mass of 3-30 M_jup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a super-stellar metallicity. Since planet formation can create objects with non-stellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.
    Article · Nov 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: We present high-resolution Large Binocular Telescope LBTI/LMIRcam images of the spectroscopic and astrometric binary NO UMa obtained as part of the LBTI Exozodi Exoplanet Common Hunt (LEECH) exoplanet imaging survey. Our H, K$_s$, and L'-band observations resolve the system at angular separations <0.09". The components exhibit significant orbital motion over a span of ~7 months. We combine our imaging data with archival images, published speckle interferometry measurements, and existing spectroscopic velocity data to solve the full orbital solution and estimate component masses. The masses of the K2.0$\pm$0.5 primary and K6.5$\pm$0.5 secondary are 0.83$\pm$0.02 M$_{\odot}$ and 0.64$\pm$0.02 M$_{\odot}$, respectively. We also derive a system distance of d = 25.87$\pm$0.02 pc and revise the Galactic kinematics of NO UMa. Our revised Galactic kinematics confirm NO UMa as a nuclear member of the ~500 Myr old Ursa Major moving group and it is thus a mass and age benchmark. We compare the masses of the NO UMa binary components to those predicted by five sets of stellar evolution models at the age of the Ursa Major group. We find excellent agreement between our measured masses and model predictions with little systematic scatter between the models. NO UMa joins the short list of nearby, bright, late-type binaries having known ages and fully characterized orbits.
    Article · Oct 2015 · The Astrophysical Journal
  • John Bally · Rita K. Mann · Josh Eisner · [...] · Jonathan P. Williams
    [Show abstract] [Hide abstract] ABSTRACT: We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 micron) dust continuum is produced only in the 350 AU central region of the ~1000 AU diameter silhouette seen against the bright H-alpha background in HST images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3.1 +/- 0.6 Jupiter masses. If most solids and ices have have been incorporated into large grains, however, this value is a lower limit. The disk is not detected in dense-gas tracers such as HCO+ J=4-3, HCN J=4-3, or CS =7-6. These results may indicate that the 114-426 disk is evolved and depleted in some light organic compounds found in molecular clouds. The CO J=3-2 line is seen in absorption against the bright 50 to 80 K background of the Orion A molecular cloud over the full spatial extent and a little beyond the dust continuum emission. The CO absorption reaches a depth of 27 K below the background CO emission at VLSR ~6.7 km/s about 0.52 arcseconds (210 AU) northeast and 12 K below the background CO emission at VLSR ~ 9.7 km/s about 0.34 arcseconds (140 AU) southwest of the suspected location of the central star, implying that the embedded star has a mass less than 1 Solar mass .
    Article · Jun 2015 · The Astrophysical Journal
  • Source
    Rita K. Mann · Sean M. Andrews · Josh A. Eisner · [...] · Doug Johnstone
    [Show abstract] [Hide abstract] ABSTRACT: We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0.003 to 0.2Msolar, with upper limits at 0.002--0.01Msolar. The NGC 2024 sample has a slightly more populated tail at the high end of its disk mass distribution compared to other clusters, but without more information on the nature of the sample hosts it remains unclear if this difference is statistically significant or a superficial selection effect. Unlike in the Orion Trapezium, there is no evidence for a disk mass dependence on the (projected) separation from the massive star IRS2b in the NGC 2024 cluster. We suggest that this is due to either the cluster youth or a comparatively weaker photoionizing radiation field.
    Full-text available · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In Spring 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its $\sim$130-night campaign from the Large Binocular Telescope (LBT) atop Mt Graham, Arizona. This survey benefits from the many technological achievements of the LBT, including two 8.4-meter mirrors on a single fixed mount, dual adaptive secondary mirrors for high Strehl performance, and a cold beam combiner to dramatically reduce the telescope's overall background emissivity. LEECH neatly complements other high-contrast planet imaging efforts by observing stars at L' (3.8 $\mu$m), as opposed to the shorter wavelength near-infrared bands (1-2.4 $\mu$m) of other surveys. This portion of the spectrum offers deep mass sensitivity, especially around nearby adolescent ($\sim$0.1-1 Gyr) stars. LEECH's contrast is competitive with other extreme adaptive optics systems, while providing an alternative survey strategy. Additionally, LEECH is characterizing known exoplanetary systems with observations from 3-5$\mu$m in preparation for JWST.
    Full-text available · Article · Jul 2014 · Proceedings of SPIE - The International Society for Optical Engineering
  • Patrick D. Sheehan · Josh A. Eisner
    [Show abstract] [Hide abstract] ABSTRACT: We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.2". Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, an HST near-infrared scattered light image, and broadband SEDs from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from \citet{Eisner2012} we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.
    Article · May 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: In February 2013, the LEECH (LBTI Exozodi Exoplanet Common Hunt) survey began its 100-night campaign from the Large Binocular Telescope atop Mount Graham in Arizona. LEECH nearly complements other high-contrast planet imaging efforts by observing stars in L' band (3.8 microns) as opposed to the shorter wavelength near-infrared bands (1-2.3 microns). This part of the spectrum offers deeper mass sensitivity for intermediate age (several hundred Myr-old) systems, since their Jovian-mass planets radiate predominantly in the mid-infrared. In this proceedings, we present the science goals for LEECH and a preliminary contrast curve from some early data.
    Full-text available · Article · Jan 2014 · Proceedings of the International Astronomical Union
  • Source
    Olivier Guyon · Josh A. Eisner · Roger Angel · [...] · Ruslan Belikov
    [Show abstract] [Hide abstract] ABSTRACT: High-precision astrometry can identify exoplanets and measure their orbits and masses while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-μas accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.
    Full-text available · Article · Mar 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Ground-based long baseline interferometers have long been limited in sensitivity by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on January 22, 2011 when the Keck Interferometer observed a K=11.5 target, about one magnitude fainter than its K=10.3 limit. This observation was made possible by the Dual Field Phase Referencing instrument of the ASTRA project: simultaneously measuring the real-time effects of the atmosphere on a nearby bright guide star, and correcting for it on the faint target, integration time longer than the turbulence time scale are made possible. As a prelude to this demonstration, we first present the implementation of Dual Field Phase Referencing on the interferometer. We then detail its on-sky performance focusing on the accuracy of the turbulence correction, and on the resulting fringe contrast stability. We conclude with a presentation of early results obtained with Laser Guide Star AO and the interferometer.
    Full-text available · Article · Jul 2012 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    Olivier Guyon · Josh A. Eisner · Roger Angel · [...] · Ruslan Belikov
    [Show abstract] [Hide abstract] ABSTRACT: Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.
    Full-text available · Article · Jun 2012 · The Astrophysical Journal Supplement Series
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present diffraction-limited \ks band and \lprime adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At \ks band the disk is detected at signal-to-noise per resolution element (SNRE) \about 3-8 from \about 1-2\fasec 5 (45-113 AU) on the western side, and from \about 1.2-2\fasec 1 (63-90 AU) on the east. At \lprime the disk is detected at SNRE \about 2.5 from \about 1-1\fasec 45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 \microns . At both wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at \ks band, but not at \lprime . The surface brightness at \ks band declines inside 1\asec (\about 45 AU), which may be indicative of a gap in the disk near 1\asec. The \ks - \lprime disk color, after removal of the stellar color, is mostly grey for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 \microns -sized grains on the east side and 1-10 \microns dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.
    Full-text available · Article · Mar 2012 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The sensitivity and astrometry upgrade ASTRA of the Keck Interferometer is introduced. After a brief overview of the underlying interferometric principles, the technology and concepts of the upgrade are presented. The interferometric dual-field technology of ASTRA will provide the KI with the means to observe two objects simultaneously, and measure the distance between them with a precision eventually better than 100 µas. This astrometric functionality of ASTRA will add a unique observing tool to fields of astrophysical research as diverse as exo-planetary kinematics, binary astrometry, and the investigation of stars accelerated by the massive black hole in the center of the Milky Way as discussed in this contribution.
    Full-text available · Article · Nov 2009 · New Astronomy Reviews
  • [Show abstract] [Hide abstract] ABSTRACT: The formation of planets is one of the major unsolved problems in modern astrophysics. Planets are believed to form out of the material in circumstellar disks known to exist around young stars, and which are a by-product of the star formation process. Therefore, the physical conditions in these disks - structure and composition as a function of stellocentric radius and vertical height, density and temperature profiles of each component - represent the initial conditions under which planets form. Clearly, a good understanding of disk structure and its time evolution are crucial to understanding planet formation, the evolution of young planetary systems (e.g. migration), and the recently discovered, and unanticipated, diversity of planetary architectures. However, the inner disk regions (interior to ~10 AU) most relevant in the context of planet formation are very poorly known, primarily because of observational challenges in spatially resolving this region. In this contribution we discuss opportunities for the next decade from spectrally and spatially resolved observations, and from direct imaging, using infrared long baseline interferometry.
    Article · Jan 2009
  • [Show abstract] [Hide abstract] ABSTRACT: Recent Spitzer observations have added to the list of young stellar objects thought to possess circumstellar disks with large gaps or inner holes. The favored explanation for these large clearings is that planets are forming (or have recently formed) in these disks, and are preventing inward accretion of outer disk material. While millimeter- wavelength imaging has confirmed the existence of large holes around a few objects, substantial uncertainties remain in understanding what is going on within the cleared regions. Imaging at mid-IR wavelengths can spatially resolve the inner edges of holes and gaps, and probe small dust within the cleared regions, potentially tracing structures associated with planets in formation. We propose to use TReCS at Gemini South to spatially resolve the mid-infrared emission from protoplanetary disks suspected of harboring massive planets, and thereby directly measure the sizes and degree of clearing of the inner holes and gaps. Using a custom short-readout mode for TReCS, and the novel imaging technique of speckle interferometry, we will spatially resolve the mid- IR emission from these potentially planet-forming systems.
    Article · Feb 2008
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report new near-infrared, long-baseline interferometric observations at the AU scale of the pre-main-sequence star FU Orionis with the PTI, IOTA and VLTI interferometers. This young stellar object has been observed on 42 nights over a period of 6 years from 1998 to 2003. We have obtained 287 independent measurements of the fringe visibility with 6 different baselines ranging from 20 to 110 meters in length, in the H and K bands. Our extensive (u,v)-plane coverage, coupled with the published spectral energy distribution data, allows us to test the accretion disk scenario. We find that the most probable explanation for these observations is that FU Ori hosts an active accretion disk whose temperature law is consistent with standard models. We are able to constrain the geometry of the disk, including an inclination of 55 deg and a position angle of 47 deg. In addition, a 10 percent peak-to-peak oscillation is detected in the data (at the two-sigma level) from the longest baselines, which we interpret as a possible disk hot-spot or companion. However, the oscillation in our best data set is best explained with an unresolved spot located at a projected distance of 10 AU at the 130 deg position angle and with a magnitude difference of DeltaK = 3.9 and DeltaH = 3.6 mag moving away from the center at a rate of 1.2 AU/yr. we propose to interpret this spot as the signature of a companion of the central FU Ori system on an extremely eccentric orbit. We speculate that the close encounter of this putative companion and the central star could be the explanation of the initial photometric rise of the luminosity of this object.
    Full-text available · Article · Mar 2005 · Astronomy and Astrophysics
  • Stuartt Corder · Josh Eisner · Anneila Sargent
    [Show abstract] [Hide abstract] ABSTRACT: We obtained high angular resolution (~2") images of the 13CO(J=1-0) line and 2.7 millimeter continuum emission, and slightly lower resolution images of 12CO(J=1-0) and C18O(J=1-0) line emission toward the Herbig Ae star AB Aurigae. We resolve a circumstellar disk of diameter 780 AU (FWHM) with a velocity pattern consistent with a purely rotational disk at inclination 21.5 degrees and position angle 58.6 degrees. Using Keplerian disk models, we find a central source dynamical mass of 2.8+-0.1 Msun and a cutoff radius of 615 AU for the 13CO emission. Inclination, mass, and radius determined from 12CO and C18O observations agree with those values, given optical depth and abundance effects. As a result of the high angular resolution of our observations, we confirm the existence of spiral structure suggested by near-IR scattered light images and show that the spiral arms represent density contrasts in the disk. Comment: 11 pages, 3 figures, accepted ApJ Letters
    Article · Feb 2005 · The Astrophysical Journal