Abolanle S. Adekunle

Obafemi Awolowo University, Ilesha, Osun, Nigeria

Are you Abolanle S. Adekunle?

Claim your profile

Publications (46)79.64 Total impact

  • Source

    Full-text · Article · Sep 2015 · RSC Advances
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New chalcone derivatives namely (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1- enyl)phenoxy)pentyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-5), (E)-(1-(5-(4-(3-(4- methylphenyl)-3-oxoprop-1-enyl)phenoxy)hexyl)-1H-1,2,3-triazol-4-yl)methyl acrylate (CH-6) and (E)-(1-(5-(4-(3-(4-methylphenyl)-3-oxoprop-1-enyl)phenoxy)decyl)-1H-1,2,3-triazol-4-yl) methyl acrylate (CH-10) were synthesized and characterized by Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) spectroscopic techniques. Ultraviolet-visible (UVvis) spectra of the synthesized compounds confirmed that the chalcones undergo photo-cross linking upon irradiation with UV-light. Potentiodynamic polarization measurements showed that both the intact and photo-cross-linked chalcones are mixed-type corrosion inhibitors for mild steel in aqueous hydrochloric acid. The EIS results showed an increase in charge transfer resistance with increasing concentration of the inhibitors. The chalcone derivatives adsorb spontaneously on mild steel surface and their adsorption obeyed the Langmuir adsorption isotherm. The adsorption mode revealed the possibility of competitive physisorption and chemisorption mechanisms. Scanning electron microscope coupled with energy dispersive X-ray spectroscopy (SEM-EDX) analyses confirmed that the chalcones formed protective film on mild steel surface. The overall results showed that the photo-cross-linked chalcones are better corrosion inhibitors than the intact chalcones. The results of quantum chemical calculations and Monte Carlo simulation studies are in good agreement with experimental result.
    Full-text · Article · Sep 2015 · RSC Advances
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The corrosion inhibition properties of some organic dyes, namely Sunset Yellow (SS), Amaranth (AM), Allura Red (AR), Tartrazine (TZ) and Fast Green (FG), for mild steel corrosion in 0.5 M HCl solution, were investigated using gravimetric, potentiodynamic polarization techniques and quantum chemical calculations. The results showed that the studied dyes are good corrosion inhibitors with enhanced inhibition efficiencies. The inhibition efficiency of all the studied dyes increases with increase in concentration, and decreases with increase in temperature. The results showed that the inhibition efficiency of the dyes increases in the presence of KI due to synergistic interactions of the dye molecules with iodide (I −) ions. Potentiodynamic polarization results revealed that the studied dyes are mixed-type inhibitors both in the absence and presence of KI. The adsorption of the studied dyes on mild steel surface, with and without KI, obeys the Langmuir adsorption isotherm and involves physical 16005 adsorption mechanism. Quantum chemical calculations revealed that the most likely sites in the dye molecules for interactions with mild steel are the S, O, and N heteroatoms.
    Full-text · Article · Sep 2015 · Molecules
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetratert- butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I− ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the quantum chemical parameters obtained with B3LYP/6-31G (d,p) method show that a combination of two quantum chemical parameters to form a composite index provides the best correlation with the experimental data.
    Full-text · Article · Aug 2015 · Molecules
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin 15123 (HPTB), 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin (T4PP), 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakis(benzoic acid) (THP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) was studied using electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM) techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR) were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.
    Full-text · Article · Aug 2015 · Molecules
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition of mild steel corrosion in 1 M HCl solution by some imidazolium-based ionic liquids (ILs), namely 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM]+[BF4]-, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM]+[BF4]- and 1-decyl-3-methylimidazolium tetrafluoroborate [C10MIM]+[BF4]- was investigated using experimental and theoretical techniques. All the studied ILs showed appreciable inhibition efficiencies. Polarization measurements showed that the studied compounds are mixed-type inhibitors and the results obeyed Langmuir adsorption isotherm. Spectroscopic studies confirmed chemical interactions between mild steel and the ILs. Scanning electron microscopy images revealed that the inhibitors formed protective film on mild steel surface. The results of quantum chemical calculations and Monte Carlo simulations agree with experimental observations.
    Full-text · Article · Jun 2015 · Journal of Molecular Liquids
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition of mild steel corrosion in 1 M HCl solution by some ionic liquids (ILs) namely, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate [HMIM][TfO], 1-hexyl-3-methylimidazolium tetrafluoroborate [HMIM][BF4], 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6], and 1-hexyl-3-methylimidazolium iodide [HMIM][I] was investigated using electrochemical measurements, spectroscopic analyses and quantum chemical calculations. All the ILs showed appreciably high inhibition efficiency. At 303 K, the results of electrochemical measurements indicated that the studied ILs are mixed-type inhibitors. The adsorption studies showed that all the four ILs adsorb spontaneously on steel surface with [HMIM][TfO], [HMIM][BF4] and [HMIM][I] obeying Langmuir adsorption isotherm, while [HMIM][PF6] conformed better with Temkin adsorption isotherm. Spectroscopic analyses suggested the formation of Fe/ILs complexes. Some quantum chemical parameters were calculated to corroborate experimental results.
    Full-text · Article · Jun 2015 · Materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mild steel is considered a material of choice in diverse industrial and structural applications. It is used to make a wide range of equipment due to its relatively low cost and good mechanical strength [1]. But acid solutions used in many industrial processes such as acid cleaning and oil well acidizing constitute strong corrosion media that enhance the rate of mild steel corrosion. As a result, corrosion of steel has been identified as a common problem that consumes large maintenance costs in many industries. It has been established that organic molecules containing heteroatoms such as nitrogen, oxygen and sulphur usually exhibit good anticorrosion activities [2]. Quinoxaline and its derivatives are among organic compounds that have been reported to be good corrosion inhibitors [3]. Quinoxaline units are parts of many materials including dyes and pharmaceuticals. They are biodegradable and non-toxic. Thus, the purpose of this work is to investigate the corrosion inhibition activities of some quinoxaline derivatives on the corrosion of mild steel in hydrochloric acid medium. To the best of our knowledge, the set of organic compounds selected for this work has not been investigated for the same purpose in any previous work. In this study, the corrosion inhibition and adsorption characteristics of four quinoxaline derivatives (Me-4-PQPB, Mt-3-PQPB, Mt-4-PQPB and Oxo-1,3-PQPB) on mild steel surface in 1 M HCl were investigated. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques were used in the study. Fourier transform infrared (FTIR) and ultraviolet-visible (UV-Vis) spectroscopic techniques were used to investigate possible formation of Fe/inhibitor complex and/or adsorption of the inhibitors on steel surface. Quantum chemical calculations were carried out on the molecules to correlate experimental results with quantum molecular parameters. The results showed that the studied molecules inhibit corrosion of mild steel in HCl medium with Me-4-PQPB having the best inhibition property. The inhibitors are mixed-type in their activities. All the inhibitors physisorb and chemisorb spontaneously on mild steel surface and their adsorption behaviour obeyed Langmuir equation. Some quantum chemical parameters support the observed trend of inhibition potencies and suggest that the inhibition effects were attributed to the protonated forms of the quinoxaline derivatives. The graphical surfaces of condensed Fukui indices suggest possible adsorption sites on the inhibitors. References 1. De la Fuente D., Diaz I., Simancas J., Chico B., Morcillo M. “Long-term Atmospheric Corrosion of Mild Steel, Corrosion Science (2010), doi:10.1016/j.corsci.2010.10.007. 2. Obi-Egbedi N.O., Obot I.B., El-Khaiary M.I., Umoren S.A., Ebenso E.E. “Computational Simulation and Statistical Analysis on the Relationship between Corrosion Inhibition Efficiency and Molecular Structure of Some Phenanthroline Derivatives on Mild Steel Surface.” Int. J. Electrochem. Sci., 6 (2011): 5649 – 5675. 3. Obi-Egbedi, N.O. and Obot, I.B. Indeno-1-one-[2,3-b]-quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Materials Chemistry and Physics 122 (2010) 325–328.
    No preview · Conference Paper · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: The corrosion inhibition activity of a newly synthesized Schiff base (SB) from 3-acetyl-4-hydroxy-6-methyl-(2H)-pyran-2-one and 2,2'-(ethylenedioxy)diethylamine was investigated on the corrosion of mild steel in 1 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopic techniques. Ultraviolet-visible (UV-vis) and Raman spectroscopic techniques were used to study the chemical interactions between SB and mild steel surface. SB was found to be a relatively good inhibitor of mild steel corrosion in 1 M HCl. The inhibition efficiency increases with increase in concentration of SB. The inhibition activity of SB was ascribed to its adsorption onto mild steel surface, through physisorption and chemisorption, and described by the Langmuir adsorption model. Quantum chemical calculations indicated the presence of atomic sites with potential nucleophilic and electrophilic characteristics with which SB can establish electronic interactions with the charged mild steel surface. Keywords: Schiff base; electrochemical techniques; mild steel; adsorption; quantum chemical calculations
    Full-text · Article · May 2015 · Materials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, electrocatalytic behaviour of graphene oxide (GO), iron (III) oxide (Fe2O3) and Prussian blue (PB) nanoparticles and their nanocomposite towards Nitrite (NO2-) and nitric oxide (NO) oxidation in neutral and acidic media respectively was carried out on platinum (Pt) modified electrode. Successful synthesis of these nano materials was confirmed using techniques such as transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy, Raman spectroscopy and x-ray diffraction spectroscopy (XRD). Successful modification of electrode was confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Results showed that the Pt-GO-Fe2O3 and Pt-GO-PB nanocomposite modified electrodes gave faster electron transfer process in both 5 mM Ferri/Ferro ([Fe(CN)6]3−/4−) redox probe and 0.1 M phosphate buffer solution (PBS). Pt-GO-Fe2O3 and Pt-GO-PB electrodes also gave enhanced NO2- and NO oxidation current compared with bare Pt and other electrodes studied. Electrocatalytic oxidation of the analyte occurred through a simple diffusion process but characterised with some level of adsorption. Tafel slope b of 468.4, 305.2 mVdec-1 (NO2-, NO); and 311.5, 277.2 mVdec-1 (NO2-, NO) were obtained for the analyte at Pt-GO-Fe2O3 and Pt-GO-PB electrode respectively. Pt-GO-Fe2O3 limit of detection and sensitivity in NO2- and NO are 6.60 M (0.0084 A/M) and 13.04 M (0.0160 A/M) respectively, while that of Pt-GO-PB electrode are 16.58 M (0.0093 A/M) and 16.50 M (0.0091 A/M). The LoD compared favourably with literature reported values. Pt-GO-Fe2O3 gave better performance to NO2- and NO electrooxidation, good resistance to electrode fouling, higher catalytic rate constant and lower limit of detection. The adsorption equilibrium constant β and the standard free energy change ΔG0 due to adsorption are 10.29 x 103 M-1 (-22.89 kJmol-1) and 3.26 x 103 M-1 (-20.04 kJmol-1) for nitrite and nitric oxide respectively at Pt-GO-Fe2O3 electrode. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of nitrite and nitric oxide in food, water, biological and environmental samples.
    Full-text · Article · Mar 2015 · RSC Advances
  • Source
    Omolola E Fayemi · Abolanle S Adekunle

    Full-text · Article · Jan 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Supercapacitive properties of synthesized metal oxide nanoparticles (MO) vis a vis iron oxides (Fe2O3) and cobalt oxide (Co3O4) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type asymmetry supercapacitor assembly was investigated. The synthesised MO and nanocomposite films were characterised using techniques such as transmission electron microscopy (TEM), scan electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX) and X-ray diffraction spectroscopy (XRD). The supercapacitance of the asymmetry MWCNT-MO based supercapacitor in 1 M H2SO4 and 1 M Na2SO4 electrolytes was measured using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic constant current charge-discharge (CD) techniques. The asymmetry supercapacitors MWCNT-Fe2O3|MWCNT and MWCNT-Co3O4|MWCNT gave the highest specific capacitance (SC) values of 439.94 mFcm-2 (or 64.74 Fg-1) and 425.83 mFcm-2 (or 45.79 Fg-1) respectively in 1 M H2SO4 using charge-discharge technique. Results obtained from charge-discharge experiment are much higher compared with those obtained using the CV technique since it is the most reliable and accurate method. The values compared favorably and higher compared to those reported in literature using similar technique. MWCNT-Fe2O3|MWCNT cell gave specific power (SP) and specific energy (SE) of 19.31 Wkg-1 and 2.68 WhKg-1 respectively in 1 M H2SO4, while the energy deliverable efficiency (Η/%) of the cell is 99.6 and 91.3% in 1 M H2SO4 and 1 M Na2SO4 respectively.
    No preview · Article · Jan 2015 · International journal of electrochemical science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work assessed levels of heavy metals exposure from silver coatings of mobile phones recharge cards of three major companies (designated as A, B and C) with price denominations 100, 200 and 400 from companies A, B and C respectively, which were carefully scratched using a plastic scraper into a glass tube. The coatings were acid digested for total metal concentration, while speciation experiment for Mn, Cu, Cd and Pb was carried out. Total metals and speciation analysis were done using AAS and XRF techniques. The total metal concentration from XRF analysis was in the range: Ca (70-2140 μg/g), K (20–4930 μg/g), Sc (80–270 μg/g), Ti (1530–12580 μg/g), Fe (50–6660 μg/g), Ni (20–2040 μg/g), Cu (20 - 850 μg/g) and Zn (40–460 μg/g). Cr had the lowest concentration (10 μg/g) in A ( 400) while Ti had the highest concentration (12580 μg/g) in C ( 500) for all the coatings analyzed. AAS and XRF results agreed closely except for Fe with higher concentration. A ( 100) contained high concentration of the metals compared with others. Speciation study identified Mn as the most mobile element when present in the environment.
    Full-text · Article · Dec 2014 · Toxicology Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bread loaves randomly sampled from nine outlets and bakeries within Ile-Ife wereanalysed to determine their safety levels for human consumption with respect to bromate and trace metal contents. Bromate determinationwas carried out via spectrophotometric method while trace metals in the digested bread samples were profiledusing Flame Atomic Absorption Spectrophotometer. Bromate levels in the analyzed bread samples ranged from 2.051 ± 0.011 μg/g to 66.224 ± 0.014 μg/g while the tracemetal levels were of the order: 0.03-0.10 μg/g Co = 0.03-0.10 μg/g Pb< 0.23-0.46 μg/gCu <2.23-6.63 μg/g Zn < 25.83-75.53 μg/g Mn.This study revealed that many bread bakers around Ile-Ife had not fully complied with the bromate-free rule stipulated by NAFDAC contrary to the “bromate free” inscribed on the labels of the bread. The bread samples containedboth essential and toxic trace metals to levels that could threaten the health of consumers over prolonged regular consumption.
    Full-text · Article · Dec 2014 · Toxicology Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite (NO2-) and nitric oxide (NO) have been identified as an environmentally hazardous analytes from discharged industrial effluents. Thus in this study, nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles were synthesized using the complexation-precipitation method and their catalytic properties towards NO2- and NO investigated. The success of the synthesised nanoparticles was confirmed using characterisation techniques, such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and the Fourier transformed infrared (FTIR) spectroscopy. The sizes of the synthesized NiO and Ni(OH)2 nanoparticles were estimated to be 5.39 and 5.07 nm respectively. The catalytic behaviour of NiO and Ni(OH)2 nanoparticles towards the oxidative degradation of NO and NO2- in acidic and neutral media respectively was studied using UV-Vis spectrophotometer. Result indicated that NiO nanoparticles demonstrated better catalytic properties at different reaction time towards NO2- and NO oxidation compared to Ni(OH)2, while NiO and Ni(OH)2 at nano scale showed enhanced catalysis towards the analytes compared with the bulk Ni salt. The bulk Ni salt did not show any sensing properties towards NO2-. However in NO, the absorbance intensity due to the generation of nitrate (NO2-) was five times higher in the presence of NiO nanoparticles compared with the bulk Ni salt. The improved catalysis of Ni(OH)2 and NiO nanoparticles in this study was attributed to effective pore sizes and large surface area which expose the analytes to more catalytic site. The nanoparticles are simple to prepare, therefore can be used for the fabrication of a simple, portable, miniaturized nitrite and nitric oxide nanosensor for potential clinical and analytical application.
    No preview · Article · Jun 2014 · International journal of electrochemical science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The determination of heavy metals in consumer products is crucial for the safety appraisal and sources classification of human and environmental exposures. These products contain various undisclosed chemical constituents with no or little known health safety information. The public is generally unaware of these types of everyday exposure from chemical constituents of consumer products and their health consequences. In this study, we recorded a body of proof demonstrating potential harm of consumer goods, by determining concentrations of total cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn), iron (Fe), lead (Pb) and nikel (Ni contents in a variety of personal care products (n = 82) commonly used in Nigeria, using flame atomic absorption spectrometer after dry and wet digestion methods. The results of the analysis indicated that the range of Cd was 0.035 ± 0.023–0.467 ± 0.167 ppm, Cr 0.015 ± 0.009–0.435 ± 0.232 ppm, Cu 0.230 ± 0.08–0.603 ± 0.025 ppm, Zn 0.003 ± 0.005–0.743 ± 0.066 ppm, Fe 0.233 ± 0.219–1.401 ± 1.878 ppm, Pb 0.02 ± 0.007–0.2050.129 ppm and Ni 0.035 ± 0.015–0.093 ± 0.06 ppm. The values of Cd and Cr are a cause for alarm because the elements are not allowed in any amount in cosmetics. Despite the fact that zinc is essential in the body, the values obtained in this study deserves safety concerns due to cumulative effect, arising from incessant exposure.
    No preview · Article · Dec 2013 · International IJC
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of various degumming agents on the trace metal concentrations of five nonconventional oils extracted from the seeds of Terminalia catappa, Irvingia gabonensis, Persea americana, Dacryodes edulis and fleshy mesocarp of D. edulis fruit and one conventional oil extracted from Glycine max were studied. The degumming of these oils was done using distilled water, NaCl solution and Ca–Mg salt solution at various concentrations as degumming agents. The findings showed that the degumming ability of the various degumming agents varied from one oil to another, with the degumming efficiency of 100–300 µg/mL NaCl solutions higher than that of 50–250 µg/mL Mg–Ca solutions. For the developing countries, the degumming process outlined in this study is a viable and an affordable alternative to the hi-tech procedures available in the developed countries. Irvingia gabonensis, Terminalia catappa, Dacryodes edulis and Persea americana are local plants cultivated across Nigeria. Their seeds and fruits have found applications in both human and animal feeding because of their high oil and protein content. However, these nonconventional oil seed sources are prone to chemical rancidity and poor shelf life because of lack of adequate technology in handling and preserving their fruits, seeds and oils. The main application of this study is to come up with cheap technology and efficient process of removing some of the chemical components of the oils responsible for their low shelf life. This could assist the food industries in the developing countries to solve the problems of the high cost of and unavailable technology from the developed nations, and hence, tackle the problem of oil spoilage or rancidity using the findings of this research.
    No preview · Article · Oct 2013 · Journal of Food Processing and Preservation
  • Abolanle S. Adekunle · Kenneth I. Ozoemena · Bolade O. Agboola
    [Show abstract] [Hide abstract]
    ABSTRACT: Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification of the electrode with the MWCNT-MO nanocomposite was confirmed with spectroscopic and microscopic techniques. Supercapacitive properties of the modified electrodes in sulphuric acid (H2SO4) and sodium sulphate (Na2SO4) electrolytes were investigated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic constant current charge–discharge (CD) techniques. The specific capacitance values followed similar trend with that of the cyclic voltammetry and the electrochemical impedance experiments and are slightly lower than values obtained using the galvanostatic charge–discharge cycling. MWCNT-NiO-based electrode gave best specific capacitance of 433.8 mF cm−2 (ca 2,119 F g−1) in H2SO4. The electrode exhibited high electrochemical reproducibility with no significant changes over 1,000 cyclic voltammetry cycles.
    No preview · Article · May 2013 · Journal of Solid State Electrochemistry
  • J.G. Ayenimo · A.S. Adekunle · F.B. Odukudu
    [Show abstract] [Hide abstract]
    ABSTRACT: The determination of heavy metals in consumer products is crucial for the appraisal and sources classification of human and environmental exposures. These products, which are ignorantly considered safe, are frequently in contact with humans, and are therefore, precisely the major sources of human exposure to pollutants. They are used on daily basis, and contain various undisclosed chemical constituents with no or little known health safety information. Yet these sources are not widely recognized, nor covered by environmental laws unlike traditionally regulated sources such as contaminated air, water and soil. The public is generally unaware of these types of everyday exposure and their health consequences. In this study, we recorded a body of proof demonstrating potential harm of consumer stuffs, by determining concentrations of Cd, Cr, Cu, Zn, Fe, Pb and Ni contents in a variety of personal care and household products (n = 82) commonly used in Nigeria, using flame atomic absorption spectrometer after dry and wet digestion methods. The results of the analysis indicated that the range of Cd was 0.035-0.467 ppm, Cr 0.015-0.435 ppm, Cu 0.230-0.603ppm, Zn 0.003-0.743 ppm, Fe 0.233-1.401 ppm, Pb 0.02-0.205 ppm and Ni 0.035-0.093 ppm. The values of Cd and Cr are a cause for alarm because the elements are not required in any amount in cosmetics. Despite the fact that zinc is essential in the body, the values obtained in this study deserves safety concerns due to cumulative effect, arising from incessant exposure. With the analytical data, it is obvious that these classes of consumer products are possible sources of human exposure to heavy metals. It could not be ascertained if the values detected in the present study are safe or not, due to dearth of data on international standards for heavy metals in personal care products, but prolonged low-dose exposure may leads to numerous skin diseases and cardiovascular disorder among users.
    No preview · Article · Jan 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The electrochemical oxidation of phenol (Ph), 4-chlorophenol (4-ClPh) and 4-nitrophenol (4-NPh) at a platinum electrode modified with and without multi-walled carbon nanotubes/Prussian blue nanocomposite in a pH 7.0 phosphate buffer electrolyte was investigated by cyclic voltammetry (CV) and impedance measurements. The modified electrodes were characterised using techniques such as transmission electron microscopy (TEM), electron X-ray dispersive spectroscopy (XRD), cyclic voltammetry (CVs) and electrochemical impedance spectroscopy (EIS). The phenol produced an irreversible CV oxidation peak whose potential increased for 4-ClPh and 4-NPh derivatives. Pt-MWCNT-SO3--PB electrode gave the highest electro-oxidation current compared to the other electrodes studied. The oxidation of the phenol compounds was not completely diffusion controlled especially at higher scan rate, and the electrode was characterized by some level of adsorption. The degree of adsorption was depicted by the Tafel values of 4292.4, 663.2 and 203.8 mVdec-1 for Ph, 4-ClPh and 4-NPh respectively. The limits of detection were in the micro molar range and the Gibbs free energy change (Go) due to adsorption was estimated as -33.8, -35.8 and -36.0 kJmol-1 for Ph, 4-ClPh and 4-NPh. Impedance data showed that the MWCNT-SO3--PB film was so porous and behaved as a pseudocapacitor towards the oxidation of the analytes.
    No preview · Article · Sep 2012 · International journal of electrochemical science

Publication Stats

370 Citations
79.64 Total Impact Points

Institutions

  • 2006-2015
    • Obafemi Awolowo University
      • Department of Chemistry
      Ilesha, Osun, Nigeria
  • 2011-2013
    • University of Johannesburg
      • Department of Chemical Technology
      Johannesburg, Gauteng, South Africa
  • 2008-2011
    • University of Pretoria
      • Department of Chemistry
      Pretoria, Gauteng, South Africa