Patrick N Harter

University Hospital Frankfurt, Frankfurt, Hesse, Germany

Are you Patrick N Harter?

Claim your profile

Publications (69)339.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Testicular germ cell tumors (TGCT) represent the most common malignant tumor group in the age group of 20 to 40-years old men. The potentially curable effect of cytotoxic therapy in TGCT is mediated mainly by the induction of apoptosis. Autophagy has been discussed as an alternative mechanism of cell death but also of treatment resistance in various types of tumors. However, in TGCT the expression and role of core autophagy-associated factors is hitherto unknown. We designed the study in order to evaluate the potential role of autophagy-associated factors in the development and progression of testicular cancers. Eighty-four patients were assessed for autophagy (BAG3, p62) and apoptosis (cleaved caspase 3) markers using immunohistochemistry (IHC) on tissue micro- arrays. In addition, western blot analyses of frozen tissue of seminoma and non-seminoma were performed. Our findings show that BAG3 was significantly upregulated in seminoma as compared to non-seminoma but not to normal testicular tissue. No significant difference of p62 expression was detected between neoplastic and normal tissue or between seminoma and non-seminoma. BAG3 and p62 showed distinct loco‑regional expression patterns in normal and neoplastic human testicular tissues. In contrast to the autophagic markers, apoptosis rate was significantly higher in testicular tumors as compared to normal testicular tissue, but not between different TGCT subtypes. The present study, for the first time, examined the expression of central autophagy proteins BAG3 and p62 in testicular cancer. Our findings imply that in general apoptosis but not autophagy induction differs between normal and neoplastic testis tissue.
    No preview · Article · Dec 2015 · Oncology Reports
  • Source

    Full-text · Dataset · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma multiforme (GBM) is treated by surgical resection followed by radiochemotherapy. Bevacizumab is commonly deployed for anti-angiogenic therapy of recurrent GBM; however, innate immune cells have been identified as instigators of resistance to bevacizumab treatment. We identified angiopoietin-2 (Ang-2) as a potential target in both naive and bevacizumab-treated glioblastoma. Ang-2 expression was absent in normal human brain endothelium, while the highest Ang-2 levels were observed in bevacizumab-treated GBM. In a murine GBM model, VEGF blockade resulted in endothelial upregulation of Ang-2, whereas the combined inhibition of VEGF and Ang-2 leads to extended survival, decreased vascular permeability, depletion of tumor-associated macrophages, improved pericyte coverage, and increased numbers of intratumoral T lymphocytes. CD206(+) (M2-like) macrophages were identified as potential novel targets following anti-angiogenic therapy. Our findings imply a novel role for endothelial cells in therapy resistance and identify endothelial cell/myeloid cell crosstalk mediated by Ang-2 as a potential resistance mechanism. Therefore, combining VEGF blockade with inhibition of Ang-2 may potentially overcome resistance to bevacizumab therapy.
    Full-text · Article · Dec 2015 · EMBO Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: A major hallmark of malignant progression in human astrocytomas is the formation of new blood vessels. Antiangiogenic therapy using the anti-vascular endothelial growth factor (VEGF)-antibody bevacizumab leads to increased progression-free survival in glioblastoma patients but does not influence their overall survival. To date, it is unclear why antiangiogenic therapy fails in many glioblastoma patients, while a small subpopulation profits considerably from this treatment. Methods: The aim of our study was to determine the expression of VEGF-A and its (co-) receptors by immunohistochemistry and to test the association with patient survival in 350 glioma patients. Additionally, VEGF-A expression was analyzed by in-situ hybridization. In 18 patients, the protein expression was compared with the bevacizumab response according to extended and modified RANO criteria. Results: We found a heterogeneous expression pattern of VEGF and its receptors in glioblastoma patients with significantly lower levels in WHO grade II and III tumors and normal-appearing brain tissue (P < .001). Pilocytic astrocytomas (WHO grade I) showed significantly higher VEGFR-1, -2 and neuropilin-1 levels as compared to WHO grade II and III astrocytomas (P < .01) but at lower levels than glioblastomas. The expression of neuropilin-2 was low in all tumors. There was neither a significant correlation between protein expression and patient survival nor between protein levels and bevacizumab response after modified RANO criteria. Conclusion: Since our data indicate that beneficial response to bevacizumab treatment is independent of the expression of VEGF-A and its (co-) receptors, further investigation is needed to decipher the underlying mechanisms of antiangiogenic treatment response.
    No preview · Article · Nov 2015 · Neuro-Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glioblastoma (GBM) represents the most frequent primary brain tumor in adults and carries a dismal prognosis despite aggressive, multimodal treatment regimens involving maximal resection, radiochemotherapy, and maintenance chemotherapy. Histologically, GBMs are characterized by a high degree of VEGF-mediated vascular proliferation. In consequence, new targeted anti-angiogenic therapies, such as the monoclonal anti-VEGF-A antibody bevacizumab, have proven effective in attenuating tumor (neo)angiogenesis and were shown to possess therapeutic activity in several phase II trials. However, the role of bevacizumab in the context of multimodal therapy approaches appears to be rather complex. This review will give insights into current concepts, limitations, and controversies regarding the molecular mechanisms and the clinical benefits of bevacizumab treatment in combination with radio(chemo)therapy - particularly in face of the results of recent phase III trials, which failed to demonstrate convincing improvements in overall survival (OS).
    Preview · Article · Nov 2015 · Oncotarget
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The activation of immune cells by targeting checkpoint inhibitors showed promising results with increased patient survival in distinct primary cancers. Since only limited data exist for human brain metastases, we aimed at characterizing tumor infiltrating lymphocytes (TILs) and expression of immune checkpoints in the respective tumors. Two brain metastases cohorts, a mixed entity cohort (n = 252) and a breast carcinoma validation cohort (n = 96) were analyzed for CD3+, CD8+, FOXP3+, PD-1+ lymphocytes and PD-L1+ tumor cells by immunohistochemistry. Analyses for association with clinico-epidemiological and neuroradiological parameters such as patient survival or tumor size were performed. TILs infiltrated brain metastases in three different patterns (stromal, peritumoral, diffuse). While carcinomas often show a strong stromal infiltration, TILs in melanomas often diffusely infiltrate the tumors. Highest levels of CD3+ and CD8+ lymphocytes were seen in renal cell carcinomas (RCC) and strongest PD-1 levels on RCCs and melanomas. High amounts of TILs, high ratios of PD-1+/CD8+ cells and high levels of PD-L1 were negatively correlated with brain metastases size, indicating that in smaller brain metastases CD8+ immune response might get blocked. PD-L1 expression strongly correlated with TILs and FOXP3 expression. No significant association of patient survival with TILs was observed, while high levels of PD-L1 showed a strong trend towards better survival in melanoma brain metastases (Log-Rank p = 0.0537). In summary, melanomas and RCCs seem to be the most immunogenic entities. Differences in immunotherapeutic response between tumor entities regarding brain metastases might be attributable to this finding and need further investigation in larger patient cohorts.
    Full-text · Article · Oct 2015 · Oncotarget
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cells of the blood–brain barrier form a structural and functional barrier maintaining brain homeostasis via paracellular tight junctions and specific transporters such as P-glycoprotein. The blood–brain barrier is responsible for negligible bioavailability of many neuroprotective drugs. In Alzheimer's disease, current treatment approaches include inhibitors of BACE-1 (b-site of amyloid precursor protein cleaving enzyme), a proteinase generating neurotoxic b-amyloid. It is known that BACE-1 is highly expressed in endosomes and membranes of neurons and glia. We now provide evidence that BACE-1 is expressed in blood–brain barrier endothelial cells of human, mouse, and bovine origin. We further show its predominant membrane localization by 3D-dSTORM super-resolution microscopy, and by biochemical fractionation that further shows an abluminal distribution of BACE-1 in brain microvessels. We confirm its func-tionality in processing APP in primary mouse brain endothelial cells. In an Alzheimer's disease mouse model we show that BACE-1 is upregulated at the blood–brain barrier compared to healthy controls. We therefore suggest a critical role for BACE-1 at the blood–brain barrier in b-amyloid generation and in vascular aspects of Alzheimer's disease, particularly in the development of cerebral amyloid angiopathy.
    Full-text · Article · Oct 2015 · Journal of Cerebral Blood Flow & Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy) ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G) in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60 h after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment.
    Full-text · Article · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Sonic Hedgehog (SHH) pathway plays a central role in the developing mammalian CNS. In our study, we aimed to investigate the spatiotemporal SHH pathway expression pattern in human fetal brains. We analyzed 22 normal fetal brains for Shh, Patched, Smoothened, and Gli1-3 expression by immunohistochemistry. In the telencephalon, strongest expression of Shh, Smoothened, and Gli2 was found in the cortical plate (CP) and ventricular zone. Patched was strongly upregulated in the ventricular zone and Gli1 in the CP. In the cerebellum, SHH pathway members were strongly expressed in the external granular layer (EGL). SHH pathway members significantly decreased over time in the ventricular and subventricular zone and in the cerebellar EGL, while increasing levels were found in more superficial telencephalic layers. Our findings show that SHH pathway members are strongly expressed in areas important for proliferation and differentiation and indicate a temporal expression gradient in telencephalic and cerebellar layers probably due to decreased proliferation of progenitor cells and increased differentiation. Our data about the spatiotemporal expression of SHH pathway members in the developing human brain serves as a base for the understanding of both normal and pathological CNS development.
    Preview · Article · Aug 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adenosine A2b receptor (Adora2b) has been implicated in cardioprotection from myocardial ischemia. As such, Adora2b was found to be critical in ischemic preconditioning (IP) or ischemia/reperfusion (IR) injury of the heart. Whereas Adora2b is present on various cells types, the tissue-specific role of Adora2b in cardioprotection is still unknown. To study the tissue-specific role of Adora2b signaling on inflammatory cells, endothelia, or myocytes during myocardial ischemia in vivo, we intercrossed floxed Adora2b mice with Lyz2-Cre(+), VE-cadherin-Cre(+), or myosin-Cre(+) transgenic mice, respectively. Mice were exposed to 60 min of myocardial ischemia with or without IP (four times for 5 min) followed by 120 min of reperfusion. Cardioprotection by IP was abolished in Adora2b(f/f)-VE-cadherin-Cre(+) or Adora2b(f/f)-myosin-Cre(+), indicating that Adora2b signaling on endothelia or myocytes mediates IP. In contrast, primarily Adora2b signaling on inflammatory cells was necessary to provide cardioprotection in IR injury, indicated by significantly larger infarcts and higher troponin levels in Adora2b(f/f)-Lyz2-Cre(+) mice only. Cytokine profiling of IR injury in Adora2b(f/f)-Lyz2-Cre(+) mice pointed toward polymorphonuclear neutrophils (PMNs). Analysis of PMNs from Adora2b(f/f)-Lyz2-Cre(+) confirmed PMNs as one source of identified tissue cytokines. Finally, adoptive transfer of Adora2b(-/-) PMNs revealed a critical role of Adora2b on PMNs in cardioprotection from IR injury. Adora2b signaling mediates different types of cardioprotection in a tissue-specific manner. These findings have implications for the use of Adora2b agonists in the treatment or prevention of myocardial injury by ischemia. Copyright © 2015 by The American Association of Immunologists, Inc.
    No preview · Article · Jul 2015 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current pathological diagnostics include the analysis of (epi-)genetic alterations as well as oncogenic pathways. Deregulated mammalian target of rapamycin complex 1 (mTORC1) signaling has been implicated in a variety of cancers including malignant gliomas and is considered a promising target in cancer treatment. Monitoring of mTORC1 activity before and during inhibitor therapy is essential. The aim of our study is to provide a recommendation and report on pitfalls in the use of phospho-specific antibodies against mTORC1-targets phospho-RPS6 (Ser235/236; Ser240/244) and phospho-4EBP1 (Thr37/46) in formalin fixed, paraffin embedded material. Primary, established cell lines and brain tumor tissue from routine diagnostics were assessed by immunocyto-, immunohistochemistry, immunofluorescent stainings and immunoblotting. For validation of results, immunoblotting experiments were performed. mTORC-pathway activation was pharmacologically inhibited by torin2 and rapamycin. Torin2 treatment led to a strong reduction of signal intensity and frequency of all tested antibodies. In contrast phospho-4EBP1 did not show considerable reduction in staining intensity after rapamycin treatment, while immunocytochemistry with both phospho-RPS6-specific antibodies showed a reduced signal compared to controls. Staining intensity of both phospho-RPS6-specific antibodies did not show considerable decrease in stability in a timeline from 0-230 minutes without tissue fixation, however we observed a strong decrease of staining intensity in phospho-4EBP1 after 30 minutes. Detection of phospho-signals was strongly dependent on tissue size and fixation gradient. mTORC1-signaling was significantly induced in glioblastomas although not restricted to cancer cells but also detectable in non-neoplastic cells. Here we provide a recommendation for phospho-specific immunohistochemistry for patient-orientated therapy decisions and monitoring treatment response.
    Full-text · Article · May 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia is a key driver for infiltrative growth in experimental gliomas. It has remained elusive whether tumor hypoxia in glioblastoma patients contributes to distant or diffuse recurrences. We therefore investigated the influence of perioperative cerebral ischemia on patterns of progression in glioblastoma patients. We retrospectively screened MRI scans of 245 patients with newly diagnosed glioblastoma undergoing resection for perioperative ischemia near the resection cavity. 46 showed relevant ischemia nearby the resection cavity. A control cohort without perioperative ischemia was generated by a 1:1 matching using an algorithm based on gender, age and adjuvant treatment. Both cohorts were analyzed for patterns of progression by a blinded neuroradiologist. The percentage of diffuse or distant recurrences at first relapse was significantly higher in the cohort with perioperative ischemia (61.1%) compared to the control cohort (19.4%). The results of the control cohort matched well with historical data. The change in patterns of progression was not associated with a difference in survival. This study reveals an unrecognized association of perioperative cerebral ischemia with distant or diffuse recurrence in glioblastoma. It is the first clinical study supporting the concept that hypoxia is a key driver of infiltrative tumor growth in glioblastoma patients.
    Full-text · Article · May 2015 · Oncotarget
  • [Show abstract] [Hide abstract]
    ABSTRACT: Treatment-related changes (TRC) often imitate tumor progression in glioblastomas. Increased regional cerebral blood volume (rCBV) can differentiate tumor progression from TRC after the standardized first-line radiochemotherapy, but information about diagnostic accuracy of rCBV for patients without any clinical selection criteria is limited. Therefore, we aimed to evaluate if rCBV can differentiate between TRC and tumor progression irrespective of preceding therapies and number of tumor progressions. We analyzed mean and maximum rCBV from the enhancing areas normalized to the contralateral white matter in 44 pretreated glioblastomas with MR-morphological tumor progression. The diagnosis (real progression vs. TRC) was determined by histopathology or by clinical/MRI-follow-up. We performed nonparametric tests, receiver operating characteristics (ROC), and Kaplan-Meier analysis. Significant differences between tumor progression (N = 37) and TRC (N = 7) were found for rCBVmean (2.44 ± 1.05 vs. 1.69 ± .56, P < .03) and rCBVmax (3.40 ± 1.25 vs. 2.21 ± .62, P < .0007). A rCBVmax of 2.6 had 78% sensitivity and 86% specificity to detect tumor progression. Neither rCBVmean nor rCBVmax was predictive for the patient overall survival (OS). There were no statistically different rCBVmean and rCBVmax between the first and further tumor progressions. The rCBVmax differentiates tumor progression from TRC in unselected recurrent glioblastomas, but it is not predictive for the OS. Copyright © 2015 by the American Society of Neuroimaging.
    No preview · Article · Apr 2015 · Journal of neuroimaging: official journal of the American Society of Neuroimaging
  • [Show abstract] [Hide abstract]
    ABSTRACT: The key metabolic enzyme lactate dehydrogenase A (LDHA) is overexpressed in many cancers, and several preclinical studies have shown encouraging results of targeted inhibition. However, the mechanistic importance of LDHA in melanoma is largely unknown and hitherto unexplored in brain metastasis. We investigated the spatial, temporal, and functional features of LDHA expression in melanoma brain metastasis across multiple in vitro assays, in a robust and predictive animal model employing MRI and PET imaging, and in a unique cohort of 80 operated patients. We further assessed the genomic and proteomic landscapes of LDHA in different cancers, particularly melanomas. LDHA expression was especially strong in early and small brain metastases in vivo and related to intratumoral hypoxia in late and large brain metastases in vivo and in patients. However, LDHA expression in human brain metastases was not associated with the number of tumors, BRAF(V600E) status, or survival. Moreover, LDHA depletion by small hairpin RNA interference did not affect cell proliferation or 3D tumorsphere growth in vitro or brain metastasis formation or survival in vivo. Integrated analyses of the genomic and proteomic landscapes of LDHA indicated that LDHA is present but not imperative for tumor progression within the CNS, or predictive of survival in melanoma patients. In a large patient cohort and in a robust animal model, we show that although LDHA expression varies biphasically during melanoma brain metastasis formation, tumor progression and survival seem to be functionally independent of LDHA. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    No preview · Article · Mar 2015 · Neuro-Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.
    Full-text · Article · Feb 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The Wnt/beta-catenin and the Hedgehog (Hh) pathway interact in various cell types while eliciting opposing or synergistic cellular effects. Both pathways are known as exclusive drivers of two distinct molecular subtypes of medulloblastoma (MB).In sonic hedgehog (Shh)-driven MB, activation of Wnt signaling has been shown to suppress tumor growth by either beta-catenin-dependent or -independent inhibition of Shh signaling. However, mechanistic insight in how beta-catenin inhibits the Hh pathway is not known.FindingsHere we show that beta-catenin stabilization by the glycogen synthase kinase 3 inhibitor lithium chloride (LiCl) reduced growth of primary hedgehog-driven MB tumor spheres from patched heterozygous mice (Ptch+/-) in vitro. LiCl treatment of MB spheres down-regulated the Hh target Gli1, whereas the repressive Gli3 protein (Gli3R) was increased. Mechanistically, we show by co-immunoprecipitation and proximity ligation assay that stabilized beta-catenin physically interacts with Gli1, leading to Gli1 sequestration and inhibition of its transcriptional activity. Reduction of Hh signaling upon LiCl stimulation resulted in reduced proliferation, sphere self renewal, a G2/M arrest and induction of a senescent-like state, indicated by p21 upregulation and by increased staining of senescence-associated beta-galactosidase (SA-betaGal). Moreover, LiCl treatment of subcutaneously transplanted MB cells significantly reduced tumor initiation defined as ¿tumor take¿. Although tumor progression was similar, LiCl-treated tumors showed decreased mitotic figures and phospho-histone H3 staining.Conclusion We propose that beta-catenin stabilization increases its physical interaction with Gli1, leading to Gli1 degradation and inhibition of Hh signaling, thereby promoting tumor cell senescence and suppression of ¿tumor take¿ in mice.
    Full-text · Article · Feb 2015 · Molecular Cancer

  • No preview · Article · Jan 2015 · Cancer Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis inhibitors have evolved in the past decade as one of the most promising biology based therapeutic strategies. Pre-clinical studies (published in 1993 and 1994) provided proof of principle that blocking of VEGF dramatically inhibits tumor growth. These observations led to the successful development of inhibitors for VEGF and VEGF receptors by various pharmaceutical companies. Bevacizumab, a monoclonal antibody neutralizing VEGF, was the first-in-class drug to achieve FDA approval for the treatment of colorectal carcinoma in 2004 and later on in other cancer types, including glioblastoma. Anti-VEGF therapy led to an increase in progression free survival in recurrent and primary GBM, but its definite role in first-line-treatment is less clear. Importantly, several preclinical studies suggested that resistance to anti-angiogenic therapy might evolve in the course of the treatment due to an infiltration of specially polarized myeloid cells. In order to define new therapeutic options for anti-angiogenic therapy we investigated the potential role of Tie2/Angiopoietin (Ang) signaling pathway in human and murine glioblastomas. We here show by means of 1) transgenic mice overexpressing Angiopoietin-1 (GFAPtet/Ang-1), 2) transgenic mice overexpressing Angiopoietin-2 (Tie-1tet/Ang-2), 3) application of synthetic activators of the Tie2 receptor tyrosine kinase, 4) application of peptibodies targeting Ang-1 and Ang-2 and 5) application of monoclonal antibodies blocking Ang-2, that targeting of the Tie2/Angiopoietin signaling pathway leads to vascular normalization, diminished influx of myeloid cells and prolonged overall survival in mice pretreated with VEGF-blockers. These findings suggest that targeting of the Tie2/Angiopoietin pathway, even alone or in combination with VEGF inhibition, might be a potential therapeutic option for glioblastoma therapy.
    No preview · Article · Nov 2014 · Neuro-Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anti-angiogenic therapy in glioblastoma (GBM) has unfortunately not led to the anticipated improvement in patient prognosis. We here describe how human GBM adapts to bevacizumab treatment at the metabolic level. By performing 13C6-glucose metabolic flux analysis, we show for the first time that the tumors undergo metabolic re-programming toward anaerobic metabolism, thereby uncoupling glycolysis from oxidative phosphorylation. Following treatment, an increased influx of 13C6-glucose was observed into the tumors, concomitant to increased lactate levels and a reduction of metabolites associated with the tricarboxylic acid cycle. This was confirmed by increased expression of glycolytic enzymes including pyruvate dehydrogenase kinase in the treated tumors. Interestingly, l-glutamine levels were also reduced. These results were further confirmed by the assessment of in vivo metabolic data obtained by magnetic resonance spectroscopy and positron emission tomography. Moreover, bevacizumab led to a depletion in glutathione levels indicating that the treatment caused oxidative stress in the tumors. Confirming the metabolic flux results, immunohistochemical analysis showed an up-regulation of lactate dehydrogenase in the bevacizumab-treated tumor core as well as in single tumor cells infiltrating the brain, which may explain the increased invasion observed after bevacizumab treatment. These observations were further validated in a panel of eight human GBM patients in which paired biopsy samples were obtained before and after bevacizumab treatment. Importantly, we show that the GBM adaptation to bevacizumab therapy is not mediated by clonal selection mechanisms, but represents an adaptive response to therapy. Electronic supplementary material The online version of this article (doi:10.1007/s00401-014-1352-5) contains supplementary material, which is available to authorized users.
    Full-text · Article · Oct 2014 · Acta Neuropathologica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AimsThe paired box gene 8 (PAX8) plays crucial roles in organ patterning and cellular differentiation during development and tumorigenesis. While its function is partly understood in vertebrate development, there is poor data concerning human CNS development and brain tumors.Methods We investigated developing human (n=19) and mouse (n=3) brains as well as medulloblastomas (n=113) for PAX8 expression by immunohistochemistry. Human medulloblastoma cell lines were assessed for PAX8 expression using PCR and immunoblotting and analysed for growth and migration following PAX8 knockdown by siRNA.ResultsPAX8 protein expression was associated with germinal layers in human and murine forebrain and hindbrain development. PAX8 expression significantly decreased over time in the external granule cell layer, but increased in the internal granule cell layer. In medulloblastoma (MB) subtypes we observed an association of PAX8 expression with SHH (sonic hedgehog) and WNT subtypes but not with group 3 and 4 MBs. Beyond that, we detected high PAX8 levels in desmoplastic MB subtypes. Univariate analyses revealed high PAX8 levels as a prognostic factor associated with a significantly better patient prognosis in human MB (overall survival: Log-Rank p=0.0404, Wilcoxon p=0.0280; progression-free survival: Log-Rank p=0.0225; Wilcoxon p=0.0136). In vitro assays revealed increased proliferation and migration of medulloblastoma cell lines after PAX8 siRNA knockdown.Conclusion In summary, high PAX8 expression is linked to better prognosis in medulloblastomas potentially by suppressing both proliferative and migratory properties of MB cells. The distinct spatio-temporal expression pattern of PAX8 during brain development might contribute to the understanding of distinct MB subtype histogenesis.
    Preview · Article · Oct 2014 · Neuropathology and Applied Neurobiology

Publication Stats

541 Citations
339.90 Total Impact Points

Institutions

  • 2011-2015
    • University Hospital Frankfurt
      Frankfurt, Hesse, Germany
  • 2008-2015
    • Goethe-Universität Frankfurt am Main
      • • Institute of Neurology - Edinger Institute
      • • Department of Neurosurgery
      Frankfurt, Hesse, Germany
  • 2007-2008
    • University of Tuebingen
      Tübingen, Baden-Württemberg, Germany