Joan J Guinovart

IRB Barcelona Institute for Research in Biomedicine, Barcino, Catalonia, Spain

Are you Joan J Guinovart?

Claim your profile

Publications (188)755.4 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims/hypothesis Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Methods Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid–Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Results Gys1 knockout (Gys1 KO) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 KO and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTGOE) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTGOE mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Conclusions/interpretation Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
    Full-text · Article · Jan 2016 · Diabetologia
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although glycogen is the only carbohydrate reserve of the brain, its overall contribution to brain functions remains unclear. It has been proposed that glycogen participates in the preservation of such functions during hypoxia. Several reports also describe a relationship between brain glycogen and susceptibility to epilepsy. To address these issues, we used our brain-specific Glycogen Synthase knockout (GYS1Nestin-KO) mouse to study the functional consequences of glycogen depletion in the brain under hypoxic conditions and susceptibility to epilepsy. GYS1Nestin-KO mice presented significantly different power spectra of hippocampal local field potentials (LFPs) than controls under hypoxic conditions. In addition, they showed greater excitability than controls for paired-pulse facilitation evoked at the hippocampal CA3–CA1 synapse during experimentally induced hypoxia, thereby suggesting a compensatory switch to presynaptic mechanisms. Furthermore, GYS1Nestin-KO mice showed greater susceptibility to hippocampal seizures and myoclonus following the administration of kainate and/or a brief train stimulation of Schaffer collaterals. We conclude that brain glycogen could play a protective role both in hypoxic situations and in the prevention of brain seizures.
    Full-text · Article · Oct 2015 · Frontiers in Cellular Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight the regulation of glucose metabolism, we studied the liver expressed isoforms aldolase B and fructose-1,6-bisphosphatase (FBPase-1), key enzymes in gluconeogenesis, analyzing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo . We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulatable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1complex was modulated by intermediate metabolites, but only in the presence of K+. We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, i n vivo fluorescence resonance energy transfer studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level via the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.
    Full-text · Article · Sep 2015 · Biochemical Journal
  • Source

    Full-text · Dataset · Sep 2015
  • Source
    Jordi Duran · Joan J Guinovart
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells,. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation.
    Full-text · Article · Sep 2015 · Molecular Aspects of Medicine

  • No preview · Conference Paper · Aug 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is a polymer of α-1,4- and α-1,6-linked glucose units that provides a readily available source of energy in living organisms. Glycogen synthase (GS) and glycogen phosphorylase (GP) are the two enzymes that control, respectively, the synthesis and degradation of this polysaccharide and constitute adequate pharmacological targets to modulate cellular glycogen levels, by means of the inhibition of their catalytic activity. Here we report on the synthesis and biological evaluation of a selective inhibitor that consists of an azobenzene moiety glycosidically linked to the anomeric carbon of a glucose molecule. In the ground state, the more stable (E)-isomer of the azobenzene glucoside had a slight inhibitory effect on rat muscle GP (RMGP, IC50 = 4.9 mM) and Escherichia coli GS (EcGS, IC50 = 1.6 mM). After irradiation and subsequent conversion to the (Z)-form, the inhibitory potency of the azobenzene glucoside did not significantly change for RMGP (IC50 = 2.4 mM), while its effect on EcGS increased by 50-fold (IC50 = 32 µM). Sucrose synthase 4 from potato, a glycosyltransferase that does not operate on glycogen, was only slightly inhibited by the (E)-isomer (IC50 = 0.73 mM). These findings could be rationalized on the basis of kinetic and computer-aided docking analysis, which indicated that both isomers of the azobenzene glucoside mimic the EcGS acceptor substrate and exert their inhibitory effect by binding to the glycogen subsite in the active center of the enzyme. The ability to selectively photoregulate the catalytic activity of key enzymes of glycogen metabolism may represent a new approach for the treatment of glycogen metabolism disorders.
    No preview · Article · May 2015 · Organic & Biomolecular Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is a polymer of α-1,4- and α-1,6-linked glucose units that provides a readily available source of energy in living organisms. Glycogen synthase (GS) and glycogen phosphorylase (GP) are the two enzymes that control, respectively, the synthesis and degradation of this polysaccharide and constitute adequate pharmacological targets to modulate cellular glycogen levels, by means of inhibition of their catalytic activity. Here we report on the synthesis and biological evaluation of a selective inhibitor that consists of an azobenzene moiety glycosidically linked to the anomeric carbon of a glucose molecule. In the ground state, the more stable (E)-isomer of the azobenzene glucoside had a slight inhibitory effect on rat muscle GP (RMGP, IC50 = 4.9 mM) and Escherichia coli GS (EcGS, IC50 = 1.6 mM). After irradiation and subsequent conversion to the (Z)-form, the inhibitory potency of the azobenzene glucoside did not significantly change for RMGP (IC50 = 2.4 mM), while its effect on EcGS increased 50-fold (IC50 = 32 μM). Sucrose synthase 4 from potatoes, a glycosyltransferase that does not operate on glycogen, was only slightly inhibited by the (E)-isomer (IC50 = 0.73 mM). These findings could be rationalized on the basis of kinetic and computer-aided docking analysis, which indicated that both isomers of the azobenzene glucoside mimic the EcGS acceptor substrate and exert their inhibitory effect by binding to the glycogen subsite in the active center of the enzyme. The ability to selectively photoregulate the catalytic activity of key enzymes of glycogen metabolism may represent a new approach for the treatment of glycogen metabolism disorders.
    No preview · Article · May 2015 · Organic & Biomolecular Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.
    Full-text · Article · Feb 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examined glucose and fructose effects on serine phosphorylation levels of a range of proteins in rat liver and muscle cells. For this, healthy adult rats were subjected to either oral glucose or fructose loads. A mini-array system was utilized to determine serine phosphorylation levels of liver and skeletal muscle proteins. A glucose oral load of 125 mg/100 g body weight (G 1/2) did not induce changes in phosphorylated serines of the proteins studied. Loading with 250 mg/100 g body weight of fructose (Fr), which induced similar glycemia levels as G 1/2, significantly increased serine phosphorylation of liver cyclin D3, PI3 kinase/p85, ERK-2, PTP2 and clusterin. The G 1/2 increased serine levels of the skeletal muscle proteins cyclin H, Cdk2, IRAK, total PKC, PTP1B, c-Raf 1, Ras and the β-subunit of the insulin receptor. The Fr induced a significant increase only in muscle serine phosphorylation of PI3 kinase/p85. The incubation of isolated rat hepatocytes with 10 mM glucose for 5 min significantly increased serine phosphorylation of 31 proteins. In contrast, incubation with 10 mM fructose produced less intense effects. Incubation with 10 mM glucose plus 75 µM fructose counteracted the effects of the incubation with glucose alone, except those on Raf-1 and Ras. Less marked effects were detected in cultured muscle cells incubated with 10 mM glucose or 10 mM glucose plus 75 µM fructose. Our results suggest that glucose and fructose act as specific functional modulators through a general mechanism that involves liver-generated signals, like micromolar fructosemia, which would inform peripheral tissues of the presence of either glucose- or fructose-derived metabolites.
    Full-text · Article · Oct 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: We generated mice that overexpress protein targeting to glycogen (PTG) in the liver (PTG(OE)), which results in an increase in liver glycogen. When fed a high-fat diet (HFD), these animals reduced their food intake. The resulting effect was a lower body weight, decreased fat mass and reduced leptin levels. Furthermore, PTG overexpression reversed the glucose intolerance and hyperinsulinemia caused by the HFD and protected against HFD-induced hepatic steatosis. Remarkably, when fed a HFD, PTG(OE) mice did not show the decrease in hepatic ATP content observed in control animals and had lower expression of neuropeptide Y (NPY) and higher expression of propiomelanocortin (POMC) in the hypothalamus. Additionally, after an overnight fast, PTG(OE) animals presented high liver glycogen content, lower liver triacylglycerol content, and lower serum concentrations of fatty acids and β-hydroxybutyrate compared to control mice, regardless whether they received a HFD or a standard diet (SD). In conclusion, liver glycogen accumulation caused a reduced food intake, protected against the deleterious effects of a HFD and diminished the metabolic impact of fasting. Therefore, we propose that hepatic glycogen content be considered a potential target for the pharmacological manipulation of diabetes and obesity.
    No preview · Article · Oct 2014 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans.
    Full-text · Article · Jul 2014 · Aging cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is a primary form of energy storage in eukaryotes that is essential for glucose homeostasis. The glycogen polymer is synthesized from glucose through the cooperative action of glycogen synthase (GS), glycogenin (GN), and glycogen branching enzyme and forms particles that range in size from 10 to 290 nm. GS is regulated by allosteric activation upon glucose-6-phosphate binding and inactivation by phosphorylation on its N- and C-terminal regulatory tails. GS alone is incapable of starting synthesis of a glycogen particle de novo, but instead it extends preexisting chains initiated by glycogenin. The molecular determinants by which GS recognizes self-glucosylated GN, the first step in glycogenesis, are unknown. We describe the crystal structure of Caenorhabditis elegans GS in complex with a minimal GS targeting sequence in GN and show that a 34-residue region of GN binds to a conserved surface on GS that is distinct from previously characterized allosteric and binding surfaces on the enzyme. The interaction identified in the GS-GN costructure is required for GS-GN interaction and for glycogen synthesis in a cell-free system and in intact cells. The interaction of full-length GS-GN proteins is enhanced by an avidity effect imparted by a dimeric state of GN and a tetrameric state of GS. Finally, the structure of the N- and C-terminal regulatory tails of GS provide a basis for understanding phosphoregulation of glycogen synthesis. These results uncover a central molecular mechanism that governs glycogen metabolism.
    Full-text · Article · Jun 2014 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The balance between the rates of protein synthesis and degradation in muscle is regulated by PI3K/Akt signaling. Here we addressed the effect of ERK activation by sodium tungstate on protein turnover in rat L6 myotubes. Phosphorylation of ERK by this compound increased protein synthesis by activating MTOR and prevented dexamethasone-induced protein degradation by blocking FoxO3a activity, but it did not alter Akt phosphorylation. Thus, activation of ERK by tungstate improves protein turnover in dexamethasone-treated cells. On the basis of our results, we propose that tungstate be considered an alternative to IGF-I and its analogs in the prevention of skeletal muscle atrophy.
    Full-text · Article · May 2014 · FEBS Letters

  • No preview · Article · Apr 2014 · Journal of Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.Journal of Cerebral Blood Flow & Metabolism advance online publication, 26 February 2014; doi:10.1038/jcbfm.2014.33.
    Full-text · Article · Feb 2014 · Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver and muscle glycogen content is reduced in diabetic patients but there is no information on the effect of diabetes on the glycogen content in the retinal pigment epithelium (RPE). The main aim of the study was to compare the glycogen content in the RPE between diabetic and non-diabetic human donors. Glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, as well as their isoforms, were also assessed. For this purpose, 44 human postmortem eye cups were included (22 from 11 type 2 diabetic and 22 from 11 non-diabetic donors matched by age). Human RPE cells cultured in normoglycemic and hyperglycemic conditions were also analyzed. Glycogen content as well as the mRNA, protein content and enzyme activity of GS and GP were determined. In addition, GS and GP isoforms were characterized. In the RPE from diabetic donors, as well as in RPE cells grown in hyperglycemic conditions, the glycogen content was increased. The increase in glycogen content was associated with an increase in GS without changes in GP levels. In RPE form human donors, the muscle GS isoform but not the liver GS isoform was detected. Regarding GP, the muscle and brain isoform of GP but not the liver GP isoform were detected. We conclude that glycogen storage is increased in the RPE of diabetic patients, and it is associated with an increase in GS activity. Further studies aimed at determining the role of glycogen deposits in the pathogenesis of diabetic retinopathy are warranted.
    No preview · Article · Jan 2014 · Acta Diabetologica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lafora disease is a fatal neurodegenerative condition characterized by the accumulation of abnormal glycogen inclusions known as Lafora bodies. It is an autosomal recessive disorder caused by mutations in either the laforin or malin gene. To study whether glycogen is primarily responsible for the neurodegeneration in Lafora disease, we generated malin knockout mice with impaired (totally or partially) glycogen synthesis. These animals did not show the increase in markers of neurodegeneration, the impairments in electrophysiological properties of hippocampal synapses, nor the susceptibility to kainate-induced epilepsy seen in the malin knockout model. Interestingly, the autophagy impairment that has been described in malin knockout animals was also rescued in this double knockout model. Conversely, two other mouse models in which glycogen is over-accumulated in the brain independently of the lack of malin showed impairment in autophagy. Our findings reveal that glycogen accumulation accounts for the neurodegeneration and functional consequences seen in the malin knockout model, as well as the impaired autophagy. These results identify the regulation of glycogen synthesis as a key target for the treatment of Lafora disease.
    Full-text · Article · Jan 2014 · Human Molecular Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic β-cells play a central role in type 2 diabetes (T2D) development, which is characterized by the progressive decline of the functional β-cell mass mainly associated with increased β-cell apoptosis. Thus, understanding how to enhance survival of β-cells is key for the management of T2D. The Insulin Receptor Substrate 2 (IRS2) protein is pivotal in mediating the Insulin/IGF signaling pathway in β-cells. In fact, IRS2 is critically required for β-cell compensation in conditions of increased insulin demand and for β-cell survival. Tungstate is a powerful anti-diabetic agent, which has been shown to promote β-cell recovery in toxin-induced diabetic rodent models. In this study, we investigated if tungstate could prevent the onset of diabetes in a scenario of dysregulated Insulin/IGF signaling and massive β-cell death. To this end, we treated mice deficient in IRS2 (Irs2(-/-)), which exhibit severe β-cell loss, with tungstate for 3 weeks. Tungstate normalized glucose tolerance in Irs2(-/-) mice, in correlation with increased β-cell mass, increased β-cell replication and a striking 3-fold reduction in β-cell apoptosis. Islets from treated Irs2-/- exhibited increased phosphorylated Erk1/2. Interestingly, tungstate repressed apoptosis-related genes in Irs2(-/-) islets in vitro and Erk1/2 blockade abolished some of these effects. Gene expression profiling evidenced a broad impact of tungstate on cell death pathways in islets from Irs2(-/-) mice, consistent with reduced apoptotic rates. Our results support that β-cell death can be arrested in the absence of IRS2 and that therapies aimed at reversing β-cell mass decline are potential strategies to prevent the progression to T2D.
    Full-text · Article · Nov 2013 · AJP Endocrinology and Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The liver responds to an increase in blood glucose levels in the postprandial state by uptake of glucose and conversion to glycogen. Liver glycogen synthase (GYS2), a key enzyme in glycogen synthesis, is controlled by a complex interplay between the allosteric activator glucose-6-phosphate (G6P) and reversible phosphorylation through GS kinase-3 and glycogen-associated form of protein phosphatase 1. Here we initially performed mutagenesis analysis and identified a key residue (Arg582) required for activation of GYS2 by G6P. We then employed GYS2 Arg582Ala knockin (+/R582A) mice in which G6P-mediated GYS2 activation has been profoundly impaired (60-70%), while sparing regulation through reversible phosphorylation. R582A-mutant-expressing hepatocytes showed significantly reduced glycogen synthesis with glucose and insulin or glucokinase activator, which resulted in channeling glucose/G6P towards glycolysis and lipid synthesis. GYS2(+/R582A) mice were modestly glucose intolerant and displayed significantly reduced glycogen accumulation with feeding or glucose load in vivo. These data show that G6P-mediated activation of GYS2 plays a key role in controlling glycogen synthesis and hepatic glucose-G6P flux control and thus whole-body glucose homeostasis.
    Full-text · Article · Aug 2013 · Diabetes

Publication Stats

4k Citations
755.40 Total Impact Points

Institutions

  • 2002-2015
    • IRB Barcelona Institute for Research in Biomedicine
      Barcino, Catalonia, Spain
  • 1974-2015
    • University of Barcelona
      • • Department of Biochemistry and Molecular Biology (Facultad de Biología)
      • • Department of Geochemistry, Petrology and Geological Prospecting
      Barcino, Catalonia, Spain
  • 2014
    • Universidad Pablo de Olavide
      Hispalis, Andalusia, Spain
    • Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas
      Barcino, Catalonia, Spain
  • 1986-2008
    • Autonomous University of Barcelona
      • • Department of Medicine and Animal Surgery
      • • Department of Biochemistry and Molecular Biology
      Cerdanyola del Vallès, Catalonia, Spain
  • 2002-2006
    • Parc de recerca biomedica de barcelona
      Barcino, Catalonia, Spain
  • 2003-2005
    • Barcelona Science Park
      Barcino, Catalonia, Spain
  • 2004
    • Barcelona Media
      Barcino, Catalonia, Spain
  • 1995
    • University of California, San Francisco
      • Department of Biochemistry and Biophysics
      San Francisco, California, United States
  • 1990
    • Universidad Autónoma de Madrid
      • Department Biochemistry
      Madrid, Madrid, Spain
  • 1989
    • Paul Sabatier University - Toulouse III
      Tolosa de Llenguadoc, Midi-Pyrénées, France