B. N. Chichkov

Laser Zentrum Hannover e.V., Hanover, Lower Saxony, Germany

Are you B. N. Chichkov?

Claim your profile

Publications (243)382.53 Total impact

  • Ulf Hinze · A. El-Tamer · S. Reiß · H. Stolz · R. Guthoff · O. Stachs · B. N. Chichkov
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Additive manufacturing and 3D printing create new paths for the design and manufacturing of implants. Technologies with high resolution are required for the development of microstructured eye implants. In the present study, we demonstrate how these technologies can be used during the design development and manufacturing of a multifocal diffractive aspheric intraocular lens. Material and Methods: Multiphoton polymerisation (MPP) is used to manufacture a diffractive relief with resolution in the sub-micrometer range. The relief is applied to the moulded body of a refractive lens, forming a trifocal lens. Propagation of light behind the lens is visualised in water with fluorescein. Results: Multifocal lenses were successfully manufactured with this approach. The optical design with three foci is confirmed by the light propagation images. The images even clearly demonstrate the impact of the refractive and diffractive elements and may provide information on artefacts and aberrations. Conclusions: Multiphoton polymerisation is an interesting tool for the flexible manufacturing of complex multifocal lenses. With future technological progress in 3D printing with MPP, this is a promising method for on-demand manufacturing of patient individual intraocular lenses.
    No preview · Article · Dec 2015 · Klinische Monatsblätter für Augenheilkunde
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study, both numerically and analytically, the effect of a substrate on the optical properties of high-refractive-index dielectric nanoparticles. We demonstrate that the optical response of subwavelength nanoparticles can be effectively modeled in the dipole approximation when the dielectric particle is replaced by a pair of point electric and magnetic dipoles with modified polarizabilities. Based on our model, we reveal the existence of the substrate-induced bianisotropic interaction (magnetoelectric coupling) between electric and magnetic dipole modes, which is strongly enhanced near the corresponding dipole resonances. This results in a specific feature of the radiation pattern that can be employed to identify the effective bianisotropic interaction experimentally.
    Full-text · Article · Sep 2015
  • Source

    Full-text · Dataset · Jul 2015
  • Source
    Boris Chichkov · Urs Zywietz · Lothar Koch

    Preview · Article · Mar 2015 · SPIENewsroom
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conventional fabrication of gold nanobiohybrids is often accomplished by multi-step chemical synthesis, causing rather long production times (hours-days) and requiring multiple purification steps. In contrast, by applying femtosecond-laser systems the process of pulsed laser ablation in liquids (PLAL) with in situ bioconjugation may be used alternatively to produce surfactant-free and functional nanobiohybrids within a single-step approach on the time scale of minutes. Gold nanobiohybrids conjugated with nucleic acids, peptides, proteins and aptamers were successfully established by these means. However, limited process productivity is a main disadvantage of the femtosecond-PLAL approach due to the short pulse duration. In this work for the first time, we utilize picosecond-PLAL to fabricate novel gold-antibody nanobiohybrids for cellular staining issues. The functionality of the nanobiohybrids is confirmed by blotting and cellular immunolabeling, resulting in equivalent staining results than achieved with conventional labeling markers. By the adoption of picosecond pulse duration a higher productivity by one order of magnitude is reached compared to the conventional femtosecond-PLAL. Moreover, the production of nanoparticles and nanobiohybrids with the same surface composition, the same amount of biomolecule load and the same level of biomolecule structure integrity is proven than that gained by femtosecond-PLAL. Finally, the potential physical mechanisms of biomolecule degradation and the quantitative on-line monitoring of the degradation are discussed. The results emphasize laser-fabricated gold-antibody nanobiohybrids as competing products to commercial immunoflow or cellular staining markers. It reveals significantly higher production speed than that achieved via existing fabrication methods and therefore represents a competing technology.
    No preview · Article · Mar 2015 · The Journal of Physical Chemistry C
  • B.N. Chichkov · E. Fadeeva · J. Koch
    [Show abstract] [Hide abstract]
    ABSTRACT: Fabrication of superhydrophobic surfaces on metal objects has a wide range of applications, including the optimization of performance of construction materials, marine crafts, aircrafts, automobiles, refrigeration machines, wind power stations, and medical devices, among many others. Therefore, one of the key features of man-made superhydrophobic surfaces is a particular surface structure. In this chapter, a universal one-step structuring technique-ablation by ultra-short pulsed laser irradiation-that can be applied to all metals is introduced. Different structure types that can be generated by this technique, together with investigations of their wetting properties, are presented. The influence of laser irradiation on the modification of the chemical composition of metal surfaces is discussed. The wetting performance of superhydrophobic metal surfaces, both with and without an additional low-surface-energy polymer coating, is outlined. A solution for maintaining superhydrophobic properties under special ambient conditions (e.g., at high pressures or temperatures) is reviewed.
    No preview · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The utilisation of the diffractive properties of Fresnel zone plates offers the possibility of intraocular lens desings with multiple foci. Such intraocular lenses can be manufctured by two-photon polymerisation (2PP). This paper explains the underlying concept and shows the principles for visualisation of the focus properties of such implants.
    Full-text · Article · Dec 2014 · Klinische Monatsblätter für Augenheilkunde
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of CW laser radiation with a wavelength of λ = 532 nm on ethyl methacrylate copolymer films doped with the Ag(hfac)COD silver precursor were studied. Laser heating of the polymer composite (up to 150–170 °C), induced by the formation of highly absorbing silver nanoparticles (NPs), brings about an accelerated photo-thermochemical decomposition of the precursor, plastification of the polymer, local transition of the composite matrix to a colloidal state and intense thermocapillary convection in the dynamic active colloid formed. As a result, a directed transport of silver NPs from the center of the laser beam to its periphery takes place, leading to the formation of a ring structure with a very high concentration of silver NPs.
    No preview · Article · Dec 2014 · Laser Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modes of laser lithography fabrication of three-dimensional submicrometer structures have been studied. The method is based on the effect of threshold two-photon polymerization of a photosensitive material at the laser beam focus. To determine the lithograph workspace in the coordinates “laser power-speed of the sample displacement with respect to the laser focus,” a series of photonic crystals with the woodpile structure is prepared. Two methods for fabricating three-dimensional structures, i.e., raster scanning and vector graphics (or the vector method) are analyzed in detail. The advantages of the vector method for fabricating periodic structures are demonstrated using crystals of inverted yablonovite as an example. The prepared samples are studied by scanning electron microscopy.
    No preview · Article · Nov 2014 · Physics of the Solid State
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article reports about nanocomposites, which refractive index is tuned by adding TiO 2 nanoparticles. We compare in situ/ex situ preparation of nanocomposites. Preparation procedure is described, properties of nanocomposites are compared, and especially we examine the applicability of two-photon polymerization (2PP) of synthesized nanocomposites. All prepared samples exhibit suitable optical transparency at specific laser wavelengths. Three-dimensional structures were generated by means of two-photon polymerization effect induced by a femtosecond laser. Keywords: high refractive index; polymer/TiO 2 nanocomposites; two-photon polymerization (2PP); 3-dimensional (3D) structures
    Full-text · Article · Jul 2014 · Polymers
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium phosphates, functionalized with nano-sized metal particles, are a promising material class for the treatment of bone defects. However, a sintering process is required in principle to achieve sufficient strength of calcium phosphate scaffolds. In this work laser-generated nano-sized silver, gold and platinum particles were adsorbed on micro-sized β-tricalcium phosphate particles and further heat treated at temperatures between 600 and 1200 °C. Gold and platinum nanoparticles underwent exponential growth starting at about 600 °C, while sintering of β-tricalcium phosphate started at 800 °C. We hypothesise that this phenomenon is caused by a heat-induced evaporation and growth process where the decrease of the particle number is directly correlated with the size increase. The silver nanoparticles on the other hand formed a new phase with the calcium phosphate (AgCa10(PO4)7) during the heat treatments and could not be observed within the ceramic scaffold anymore. Addressing the lack of information in nanoparticle-combined calcium phosphate scaffolds, this study contributes to the further modification of bone replacement materials with biologically relevant functions and molecules.
    No preview · Article · Jul 2014 · Ceramics International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a demonstration of unique capabilities of three-dimensional laser lithography, an example complex-shape microobject and photonic crystals with “woodpile” structure for the infrared spectral range are fabricated by this technique. Photonic dispersion relations for the woodpile structure are calculated for different values of the permittivity contrast and the filling factor.
    Full-text · Article · Jul 2014 · JETP Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spherical silicon nanoparticles with the sizes of 100–200 nm exhibit strong electric and magnetic dipole responses in the visible spectral range due to Mie resonances. At the resonance conditions, electromagnetic energy is accumulated inside Si nanoparticles, which can be used for the realization of efficient nanoantennas, nanolasers, and novel metamaterials. In this paper, modification of optical properties of Si nanoparticles by metal nanoinclusions, randomly distributed inside them, is theoretically investigated. The method is based on the recently developed, so-called, decomposed discrete dipole approximation (DDDA) allowing multipole analysis of light scattering by arbitrary shaped inhomogeneous nanoparticles. Particularly, the influence of metal nanoinclusions, their concentration and distribution, on the excitation of magnetic and electric dipole modes in Si nanoparticles is studied.
    Full-text · Article · Apr 2014 · Optics Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper reports ex-situ preparation of conductive polymer/single-walled carbon nanotubes (SWNTs) nanocomposites by adding high conductive SWNTs to the polymer matrix. Sonication methods were used to disperse the SWNTs in the polymer. The conductivity of the nanocomposites is tuned by increasing the concentration of SWNTs. Furthermore, we present two-photon polymerization (2PP) method to fabricate structures on the basis of conductive photosensitive composites. The conductive structures were successfully generated by means of 2PP effect induced by a femtosecond laser.
    No preview · Article · Jan 2014 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: In this study, the suitability of a mixture containing riboflavin (vitamin B2) and triethanolamine (TEOHA) as a novel biocompatible photoinitiator for two-photon polymerization (2PP) processing was investigated. Materials & methods: Polyethylene glycol diacrylate was crosslinked using Irgacure(®) 369, Irgacure 2959 or a riboflavin-TEOHA mixture; biocompatibility of the photopolymer extract solutions was subsequently assessed via endothelial cell proliferation assay, endothelial cell viability assay and single-cell gel electrophoresis (comet) assay. Use of a riboflavin-TEOHA mixture as a photoinitiator for 2PP processing of a tissue engineering scaffold and subsequent seeding of this scaffold with GM-7373 bovine aortic endothelial cells was also demonstrated. Results: The riboflavin-TEOHA mixture was found to produce much more biocompatible scaffolds than those produced with Irgacure 369 or Irgacure 2959. Conclusion: The results suggest that riboflavin is a promising component of photoinitiators for 2PP fabrication of tissue engineering scaffolds and other medically relevant structures (e.g., biomicroelectromechanical systems).
    No preview · Article · Nov 2013 · Regenerative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.
    No preview · Article · Oct 2013 · Applied Physics A

  • No preview · Article · Sep 2013 · Biomedizinische Technik/Biomedical Engineering
  • E Fadeeva · I Linke · T Lenarz · B Chichkov · G Paasche

    No preview · Article · Sep 2013 · Biomedizinische Technik/Biomedical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: In den industrialisierten Ländern ist das Glaukom eine der häufigsten Ursachen, die zur Erblindung führt; weltweit ist es die häufigste Ursache der irreversiblen Erblindung. Neben der medikamentösen Drucksenkung und filtrierenden chirurgischen Eingriffen finden zunehmend alloplastische Implantate Verwendung in der Glaukomtherapie. Da die in der Literatur publizierten Langzeitresultate der bisher verwendeten Implantate nicht befriedigend sind, scheint es sinnvoll, nach neuen Konzepten zu suchen. Dabei wird einerseits der Drainageort untersucht – in dieser Studie der Suprachoroidalraum –, andererseits soll durch die Entwicklung eines druckgesteuerten Mikrostents mit den antiproliferativen Oberflächenbeschichtungen Paclitaxel und Mitomycin C eine Vermeidung der bekannten kurz- und langfristigen postoperativen Komplikationen erreicht werden. Schließlich soll mithilfe einer Glaukominduktion im Tierversuch die Funktionalität des Mikrostents in vivo getestet werden. Die vorliegende Arbeit beschreibt das Konzept eines neuartigen Mikrostents zur Ableitung des Kammerwassers in den Suprachoroidalraum. Erste Resultate zeigen eine korrekte Implantation eines beschichteten Mikrostents mit Ventil. Die antiproliferative Wirkung der Beschichtung konnte histologisch nachgewiesen werden. Des Weiteren wird festgehalten, dass für die Überprüfung der Ergebnisse am Versuchstier ein Glaukommodell notwendig ist, wobei alle infrage kommenden und in der Literatur beschriebenen Glaukommodelle diskutiert werden. Leider konnte keine der Methoden dauerhaft reproduziert werden. Die vorliegenden vielversprechenden ersten Versuche sollten u. a. durch weitere Forschung im Bereich der Dosisfindung des antiproliferativen Wirkstoffes und der Funktionalität des Ventils im Einstrombereich weiter verfolgt werden, wobei das Ziel die Erprobung des Stents im menschlichen Auge sein wird.
    No preview · Article · Aug 2013 · Der Ophthalmologe
  • [Show abstract] [Hide abstract]
    ABSTRACT: In industrialized countries glaucoma is one of the most common causes that leads to blindness. It is also the most common cause of irreversible blindness worldwide. In addition to local treatment of intraocular pressure and filtering glaucoma surgery, alloplastic implants are increasingly being used in glaucoma therapy. As long-term results published in the literature of commonly used implants are unsatisfactory, it seems useful to search for new concepts. In order to avoid the well-known short-term and long-term postoperative complications a pressure-controlled microstent with antiproliferative surface modifications was developed. Additionally, the functionality of such a microstent should be investigated using an animal glaucoma model. This paper describes the concept of a microstent which drains aquous humour from the anterior chamber into the suprachoroidal space. In addition, the glaucoma models described in the literature are discussed. Unfortunately, none of the methods could be reproduced permanently. First results show a correct implantation of a coated microstent with valve where the anti-proliferative effect could be demonstrated histologically. The promising results should lead to further investigations and the final goal will be the testing of the stent in the human eye.
    No preview · Article · Jul 2013 · Der Ophthalmologe

Publication Stats

5k Citations
382.53 Total Impact Points


  • 1996-2015
    • Laser Zentrum Hannover e.V.
      Hanover, Lower Saxony, Germany
  • 2012
    • University of North Carolina at Chapel Hill
      • Department of Biomedical Engineering
      North Carolina, United States
  • 2010
    • Novosibirsk State University
      Novo-Nikolaevsk, Novosibirsk, Russia
  • 2008
    • Foundation for Research and Technology - Hellas
      • Institute of Electronic Structure and Laser (IESL)
      Megalokastro, Crete, Greece
  • 1999-2008
    • Russian Academy of Sciences
      Moskva, Moscow, Russia
  • 2000-2006
    • Leibniz Universität Hannover
      Hanover, Lower Saxony, Germany
    • Friedrich-Schiller-University Jena
      Jena, Thuringia, Germany
  • 1995
    • Max Planck Institute for Biophysical Chemistry
      Göttingen, Lower Saxony, Germany
  • 1994
    • Technical University Darmstadt
      Darmstadt, Hesse, Germany
  • 1992
    • Osaka University
      • Institute of Laser Engineering
      Suika, Ōsaka, Japan