Charmain Hamilton

University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Are you Charmain Hamilton?

Claim your profile

Publications (3)6.83 Total impact

  • Raymond W M Kwong · Charmain D Hamilton · Som Niyogi
    [Show abstract] [Hide abstract]
    ABSTRACT: Diet is the primary source of iron (Fe) for freshwater fish, and the absorption of Fe is believed to occur via the Nramp family of divalent metal transporters (also called DMT1). Presently, the homeostatic regulation of dietary Fe absorption in fish is poorly understood. This study examined the gastrointestinal mRNA expression of two Nramp isoforms, Nramp-β and Nramp-γ, in the freshwater rainbow trout (Oncorhynchus mykiss), following exposure to elevated dietary Fe [1,256 mg Fe/kg food vs. 136 mg Fe/kg food (control)] for 14 days. The physiological performance, plasma Fe status and tissue-specific accumulation of Fe were also evaluated. In general, the mRNA expression level of Nramp was higher in the intestine relative to the stomach. Interestingly, fish fed on a high-Fe diet exhibited a significant induction in Nramp expression after 7 days, followed by a decrease to the level observed in control fish on day 14. The increase in Nramp expression correlated with the elevated gastrointestinal and plasma Fe concentrations. However, the hepatic Fe concentration remained unchanged during the entire exposure period, indicating strong homeostatic regulation of hepatic Fe level in fish. Fish appeared to handle increased systemic Fe level by elevating the plasma transferrin level, thereby enhancing the Fe-binding capacity in the plasma. Overall, our study provides new interesting insights into the homeostatic regulation of dietary Fe uptake and handling in freshwater fish.
    No preview · Article · Aug 2012 · Fish Physiology and Biochemistry
  • Sougat Misra · Charmain Hamilton · Som Niyogi
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish are exposed to environmental selenium predominantly in the form of dietary selenomethionine (SeMet). The present study was designed to investigate the role of oxidative stress in the toxicity of SeMet using isolated hepatocytes of rainbow trout (Oncorhynchus mykiss) as the model experimental system. Cells were exposed to an increasing range of SeMet (0-1000 μM) over 24h, and the time-dependent effects on cell viability, response of enzymatic antioxidants, thiol redox, intracellular calcium balance and caspase-mediated apoptosis were evaluated. SeMet was found to be toxic only at the highest exposure dose (1000 μM), with ∼15% decrease in cell viability. Although modest increases in the activities of antioxidant enzymes were recorded following SeMet exposure, the ratio of reduced to oxidized glutathione decreased in a dose-dependent manner, suggesting a gradual progression towards an oxidative intracellular environment. The peroxidation of membrane lipids also increased with increasing SeMet exposure dose. In addition, a rapid increase in intracellular calcium level and the activation of caspase 3/7 enzymes were recorded at the highest exposure dose, indicating that SeMet at a high exposure dose causes cell death probably via apoptosis. Overall, our study demonstrated that oxidative stress plays a key role in the cytotoxicity of SeMet in fish.
    No preview · Article · Feb 2012 · Toxicology in Vitro
  • Sougat Misra · Derek Peak · Ning Chen · Charmain Hamilton · Som Niyogi
    [Show abstract] [Hide abstract]
    ABSTRACT: The toxicity of selenium in fish is influenced by its chemical speciation and the exposure route. In the natural environment, selenium exposure to fish occurs primarily in the form of selenomethionine in diet. Thus, the main objective of this study was to examine the tissue-specific selenium burden and speciation in fish exposed to elevated dietary selenomethionine. Rainbow trout (Oncorhynchus mykiss) were treated with dietary selenomethionine (40 μg g(-1) dry mass) for 2 weeks, and at the end of the exposure different tissue samples were collected to assess the tissue-specific distribution and speciation of selenium. We used synchrotron-based X-ray absorption near edge spectroscopy (XANES) to determine the selenium speciation profile. Selenomethionine, selenocysteine and selenocystine were found to be the predominant form of selenium in all of the tissues; however their relative proportion varied across different tissues. In general, the organs primarily involved in selenium handling in fish (e.g., liver, kidney) accumulated a higher percentage of selenocystine. We also found that dietary selenomethionine exposure resulted into a marked increase in selenium burden of all major tissues in fish including the brain. Collectively, our findings provide new insights into the tissue-specific distribution and speciation of selenium in fish exposed to selenomethionine via diet.
    No preview · Article · Jan 2012 · Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology