Michelle J Bauer

Queensland Institute of Medical Research, Brisbane, Queensland, Australia

Are you Michelle J Bauer?

Claim your profile

Publications (2)3.62 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Integrative conjugative elements (ICEs) are mobile genetic elements (MGEs) that possess all genes necessary for excision, transfer and integration into recipient genome. They also carry accessory genes that impart new phenotypic features to recipient strains. ICEs therefore play an important role in genomic plasticity and population structure. We previously characterised ICESde3396, the first ICE identified in the β-hemolytic Streptococcus dysgalactiae subsp equisimilis (SDSE) and demonstrated its transfer to single isolates of Streptococcus pyogenes (group A streptococcus, GAS) and Streptococcus agalactiae (group B streptococcus, GBS). While molecular studies found the ICE in multiple SDSE and GBS isolates, it was absent in all GAS isolates examined. Results Here we demonstrate that ICESde3396:km is transferable from SDSE to multiple SDSE, GAS and GBS isolates. However not all strains of these species were successful recipients under the same growth conditions. To address the role that host factors may have in conjugation we also undertook conjugation experiments in the presence of A549 epithelial cells and DMEM. While Horizontal Gene Transfer (HGT) occurred, conjugation efficiencies were no greater than when similar experiments were conducted in DMEM. Additionally transfer to GAS NS235 was successful in the presence of DMEM but not in Todd Hewitt Broth suggesting that nutritional factors may also influence HGT. The GAS and GBS transconjugants produced in this study are also able to act as donors of the ICE. Conclusion We conclude that ICEs are major sources of interspecies HGT between β-hemolytic streptococci, and by introducing accessory genes imparting novel phenotypic characteristics, have the potential to alter the population structure of these species.
    Full-text · Article · Aug 2014 · BMC Research Notes
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major challenge for Streptococcus pyogenes vaccine development is the identification of epitopes that confer protection from infection by multiple S. pyogenes M-types. Here we have identified and characterised the distribution of common variant sequences from individual repeat units of the C-repeat region (CRR) of M-proteins representing 77 different M-types. Three polyvalent fusion vaccine candidates (SV1, SV2 and SV3) incorporating the most common variants were subsequently expressed and purified, and demonstrated to be alpha-helical by Circular Dichroism (CD), a secondary conformational characteristic of the CRR in the M-protein. Antibodies raised against each of these constructs recognise M-proteins that vary in their CRR, and bind to the surface of multiple S. pyogenes isolates. Antibodies raised against SV1, containing five variant sequences, also kill heterologous S. pyogenes isolates in in vitro bactericidal assays. Further structural characterisation of this construct demonstrated the conformation of SV1 was stable at different pHs, and thermal unfolding of SV1 is a reversible process. Our findings demonstrate that linkage of multiple variant sequences into a single recombinant construct overcomes the need to embed the variant sequences in foreign helix promoting flanking sequences for conformational stability, and demonstrates the viability of the polyvalent candidates as global S. pyogenes vaccine candidates.
    No preview · Article · Mar 2012 · Vaccine