Alan Edelman

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Are you Alan Edelman?

Claim your profile

Publications (113)113.87 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bridging cultures that have often been distant, Julia combines expertise from the diverse fields of computer science and computational science to create a new approach to numerical computing. Julia is designed to be easy and fast. Julia questions notions generally held as “laws of nature” by practitioners of numerical computing: 1. High-level dynamic programs have to be slow, 2. One must prototype in one language and then rewrite in another language for speed or deploy- ment, and 3. There are parts of a system for the programmer, and other parts best left untouched as they are built by the experts. We introduce the Julia programming language and its design — a dance between specialization and abstraction. Specialization allows for custom treatment. Multiple dispatch, a technique from computer science, picks the right algorithm for the right circumstance. Abstraction, what good computation is really about, recognizes what remains the same after differences are stripped away. Abstractions in mathematics are captured as code through another technique from computer science, generic programming. Julia shows that one can have machine performance without sacrificing human convenience.
    Full-text · Article · Jul 2015
  • Source
    Oren Mangoubi · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a method that uses the Cauchy-Crofton formula and a new curvature formula from integral geometry to reweight the sampling probabilities of Metropolis-within-Gibbs algorithms in order to increase their convergence speed. We consider algorithms that sample from a probability density conditioned on a manifold $\mathcal{M}$. Our method exploits the symmetries of the algorithms' isotropic random search-direction subspaces to analytically average out the variance in the intersection volume caused by the orientation of the search-subspace with respect to the manifold $\mathcal{M}$ it intersects. This variance can grow exponentially with the dimension of the search-subspace, greatly slowing down the algorithm. Eliminating this variance allows us to use search-subspaces of dimensions many times greater than would otherwise be possible, allowing us to sample very rare events that a lower-dimensional search-subspace would be unlikely to intersect. To extend this method to events that are rare for reasons other than their support $\mathcal{M}$ having a lower dimension, we formulate and prove a new theorem in integral geometry that makes use of the curvature form of the Chern-Gauss-Bonnet theorem to reweight sampling probabilities. On the side, we also apply our theorem to obtain new theoretical bounds for the volumes of real algebraic manifolds. Finally, we demonstrate the computational effectiveness and speedup of our method by numerically applying it to the conditional stochastic Airy operator sampling problem in random matrix theory.
    Full-text · Article · Mar 2015
  • Source
    Alexander Dubbs · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: The four major asymptotic level density laws of random matrix theory may all be showcased though their Jacobi parameter representation as having a bordered Toeplitz form. We compare and contrast these laws, completing and exploring their representations in one place. Inspired by the bordered Toeplitz form, we propose an algorithm for the finite moment problem by proposing a solution whose density has a bordered Toeplitz form.
    Preview · Article · Feb 2015 · Linear Algebra and its Applications
  • Source
    Alan Edelman · Gilbert Strang
    [Show abstract] [Hide abstract]
    ABSTRACT: What is the probability that a random triangle is acute? We explore this old question from a modern viewpoint, taking into account linear algebra, shape theory, numerical analysis, random matrix theory, the Hopf fibration, and much much more. One of the best distributions of random triangles takes all six vertex coordinates as independent standard Gaussians. Six can be reduced to four by translation of the center to $(0,0)$ or reformulation as a 2x2 matrix problem. In this note, we develop shape theory in its historical context for a wide audience. We hope to encourage other to look again (and differently) at triangles. We provide a new constructive proof, using the geometry of parallelians, of a central result of shape theory: Triangle shapes naturally fall on a hemisphere. We give several proofs of the key random result: that triangles are uniformly distributed when the normal distribution is transferred to the hemisphere. A new proof connects to the distribution of random condition numbers. Generalizing to higher dimensions, we obtain the "square root ellipticity statistic" of random matrix theory. Another proof connects the Hopf map to the SVD of 2 by 2 matrices. A new theorem describes three similar triangles hidden in the hemisphere. Many triangle properties are reformulated as matrix theorems, providing insight to both. This paper argues for a shift of viewpoint to the modern approaches of random matrix theory. As one example, we propose that the smallest singular value is an effective test for uniformity. New software is developed and applications are proposed.
    Preview · Article · Jan 2015 · Foundations of Computational Mathematics
  • Source
    Alan Edelman · Michael La Croix
    [Show abstract] [Hide abstract]
    ABSTRACT: Some properties that nominally involve the eigenvalues of Gaussian Unitary Ensemble (GUE) can instead be phrased in terms of singular values. By discarding the signs of the eigenvalues, we gain access to a surprising decomposition: the singular values of the GUE are distributed as the union of the singular values of two independent ensembles of Laguerre type. This independence is remarkable given the well known phenomenon of eigenvalue repulsion. The structure of this decomposition reveals that several existing observations about large $n$ limits of the GUE are in fact manifestations of phenomena that are already present for finite random matrices. We relate the semicircle law to the quarter-circle law by connecting Hermite polynomials to generalized Laguerre polynomials with parameter $\pm$1/2. Similarly, we write the absolute value of the determinant of the $n\times{}n$ GUE as a product n independent random variables to gain new insight into its asymptotic log-normality. The decomposition also provides a description of the distribution of the smallest singular value of the GUE, which in turn permits the study of the leading order behavior of the condition number of GUE matrices. The study is motivated by questions involving the enumeration of orientable maps, and is related to questions involving powers of complex Ginibre matrices. The inescapable conclusion of this work is that the singular values of the GUE play an unpredictably important role that had gone unnoticed for decades even though, in hindsight, so many clues had been around.
    Preview · Article · Oct 2014
  • Source
    Jiahao Chen · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphism in programming languages enables code reuse. Here, we show that polymorphism has broad applicability far beyond computations for technical computing: parallelism in distributed computing, presentation of visualizations of runtime data flow, and proofs for formal verification of correctness. The ability to reuse a single codebase for all these purposes provides new ways to understand and verify parallel programs.
    Full-text · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Arrays are such a rich and fundamental data type that they tend to be built into a language, either in the compiler or in a large low-level library. Defining this functionality at the user level instead provides greater flexibility for application domains not envisioned by the language designer. Only a few languages, such as C++ and Haskell, provide the necessary power to define n-dimensional arrays, but these systems rely on compile-time abstraction, sacrificing some flexibility. In contrast, dynamic languages make it straightforward for the user to define any behavior they might want, but at the possible expense of performance. As part of the Julia language project, we have developed an approach that yields a novel trade-off between flexibility and compile-time analysis. The core abstraction we use is multiple dispatch. We have come to believe that while multiple dispatch has not been especially popular in most kinds of programming, technical computing is its killer application. By expressing key functions such as array indexing using multi-method signatures, a surprising range of behaviors can be obtained, in a way that is both relatively easy to write and amenable to compiler analysis. The compact factoring of concerns provided by these methods makes it easier for user-defined types to behave consistently with types in the standard library.
    Full-text · Article · Jul 2014
  • Alan Edelman · Per-Olof Persson · Brian D. Sutton
    [Show abstract] [Hide abstract]
    ABSTRACT: "Low temperature" random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, β is identified with inverse temperature, and low temperatures are achieved through the limit β→∞. In this paper, we derive statistics for low-temperature random matrices at the "soft edge," which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-β Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-β random matrix theory.
    No preview · Article · Jun 2014 · Journal of Mathematical Physics
  • Alan Edelman · Plamen Koev
    [Show abstract] [Hide abstract]
    ABSTRACT: We derive explicit expressions for the distributions of the extreme eigenvalues of the beta-Wishart random matrices in terms of the hypergeometric function of a matrix argument. These results generalize the classical results for the real (β = 1), complex (β = 2), and quaternion (β = 4) Wishart matrices to any β > 0.
    No preview · Article · May 2014
  • Source
    Alexander Dubbs · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: We find the joint generalized singular value distribution and largest generalized singular value distributions of the $\beta$-MANOVA ensemble with positive diagonal covariance, which is general. This has been done for the continuous $\beta > 0$ case for identity covariance (in eigenvalue form), and by setting the covariance to $I$ in our model we get another version. For the diagonal covariance case, it has only been done for $\beta = 1,2,4$ cases (real, complex, and quaternion matrix entries). This is in a way the first second-order $\beta$-ensemble, since the sampler for the generalized singular values of the $\beta$-MANOVA with diagonal covariance calls the sampler for the eigenvalues of the $\beta$-Wishart with diagonal covariance of Forrester and Dubbs-Edelman-Koev-Venkataramana. We use a conjecture of MacDonald proven by Baker and Forrester concerning an integral of a hypergeometric function and a theorem of Kaneko concerning an integral of Jack polynomials to derive our generalized singular value distributions. In addition we use many identities from Forrester's {\it Log-Gases and Random Matrices}. We supply numerical evidence that our theorems are correct.
    Full-text · Article · Sep 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a “broken-arrow” matrix model for the β-Wishart ensemble, which improves on the traditional bidiagonal model by generalizing to non-identity covariance parameters. We prove that its joint eigenvalue density involves the correct hypergeometric function of two matrix arguments, and a continuous parameter β > 0. If we choose β = 1, 2, 4, we recover the classical Wishart ensembles of general covariance over the reals, complexes, and quaternions. Jack polynomials are often defined as the eigenfunctions of the Laplace-Beltrami operator. We prove that Jack polynomials are in addition eigenfunctions of an integral operator defined as an average over a β-dependent measure on the sphere. When combined with an identity due to Stanley, we derive a definition of Jack polynomials. An efficient numerical algorithm is also presented for simulations. The algorithm makes use of secular equation software for broken arrow matrices currently unavailable in the popular technical computing languages. The simulations are matched against the cdfs for the extreme eigenvalues. The techniques here suggest that arrow and broken arrow matrices can play an important role in theoretical and computational random matrix theory including the study of corners processes. We provide a number of simulations illustrating the extreme eigenvalue distributions that are likely to be useful for applications. We also compare the n → ∞ answer for all β with the free-probability prediction.
    Full-text · Article · May 2013 · Journal of Mathematical Physics
  • Source
    V.B. Shah · A. Edelman · S. Karpinski · J. Bezanson · J. Kepner
    [Show abstract] [Hide abstract]
    ABSTRACT: A linear algebraic approach to graph algorithms that exploits the sparse adjacency matrix representation of graphs can provide a variety of benefits. These benefits include syntactic simplicity, easier implementation, and higher performance. One way to employ linear algebra techniques for graph algorithms is to use a broader definition of matrix and vector multiplication. We demonstrate through the use of the Julia language system how easy it is to explore semirings using linear algebraic methodologies.
    Full-text · Conference Paper · Jan 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic languages have become popular for scientific computing. They are generally considered highly productive, but lacking in performance. This paper presents Julia, a new dynamic language for technical computing, designed for performance from the beginning by adapting and extending modern programming language techniques. A design based on generic functions and a rich type system simultaneously enables an expressive programming model and successful type inference, leading to good performance for a wide range of programs. This makes it possible for much of the Julia library to be written in Julia itself, while also incorporating best-of-breed C and Fortran libraries.
    Full-text · Technical Report · Sep 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical studies of localization, anomalous diffusion and ergodicity breaking require solving the electronic structure of disordered systems. We use free probability to approximate the ensemble-averaged density of states without exact diagonalization. We present an error analysis that quantifies the accuracy using a generalized moment expansion, allowing us to distinguish between different approximations. We identify an approximation that is accurate to the eighth moment across all noise strengths, and contrast this with perturbation theory and isotropic entanglement theory.
    Full-text · Article · Jul 2012 · Physical Review Letters
  • Source
    Ramis Movassagh · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: We define an indefinite Wishart matrix as a matrix of the form A=W^{T}W\Sigma, where \Sigma is an indefinite diagonal matrix and W is a matrix of independent standard normals. We focus on the case where W is L by 2 which has engineering applications. We obtain the distribution of the ratio of the eigenvalues of A. This distribution can be "folded" to give the distribution of the condition number. We calculate formulas for W real (\beta=1), complex (\beta=2), quaternionic (\beta=4) or any ghost 0<\beta<\infty. We then corroborate our work by comparing them against numerical experiments.
    Preview · Article · Jul 2012 · Linear Algebra and its Applications
  • Source
    Jiahao Chen · Troy Van Voorhis · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the implications of free probability for random matrices. From rules for calculating all possible joint moments of two free random matrices, we develop a notion of partial freeness which is quantified by the breakdown of these rules. We provide a combinatorial interpretation for partial freeness as the presence of closed paths in Hilbert space defined by particular joint moments. We also discuss how asymptotic moment expansions provide an error term on the density of states. We present MATLAB code for the calculation of moments and free cumulants of arbitrary random matrices.
    Full-text · Article · Apr 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: We approximate the density of states in disordered systems by decomposing the Hamiltonian into two random matrices and constructing their free convolution. The error in this approximation is determined using asymptotic moment expansions. Each moment can be decomposed into contributions from specific joint moments of the random matrices; each of which has a combinatorial interpretation as the weighted sum of returning trajectories. We show how the error, like the free convolution itself, can be calculated without explicit diagonalization of the Hamiltonian. We apply our theory to Hamiltonians for one-dimensional tight binding models with Gaussian and semicircular site disorder. We find that the particular choice of decomposition crucially determines the accuracy of the resultant density of states. From a partitioning of the Hamiltonian into diagonal and off-diagonal components, free convolution produces an approximate density of states which is correct to the eighth moment. This allows us to explain the accuracy of mean field theories such as the coherent potential approximation, as well as the results of isotropic entanglement theory.
    No preview · Article · Feb 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bearing estimates input to a tracking algorithm require a concomitant measurement error to convey confidence. When Capon algorithm based bearing estimates are derived from low signal-to-noise ratio (SNR) data, the method of interval errors (MIE) provides a representation of measurement error improved over high SNR metrics like the Cramér-Rao bound or Taylor series. A corresponding improvement in overall tracker performance is had. These results have been demonstrated [4] assuming MIE has perfect knowledge of the true data covariance. Herein this assumption is weakened to explore the potential performance of a practical implementation that must address the challenges of non-stationarity and finite sample effects. Comparisons with known non-linear smoothing techniques designed to reject outlier measurements is also explored.
    No preview · Conference Paper · Nov 2011
  • Source
    Ramis Movassagh · Alan Edelman
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a method that we call isotropic entanglement (IE), which predicts the eigenvalue distribution of quantum many body (spin) systems with generic interactions. We interpolate between two known approximations by matching fourth moments. Though such problems can be QMA-complete, our examples show that isotropic entanglement provides an accurate picture of the spectra well beyond what one expects from the first four moments alone. We further show that the interpolation is universal, i.e., independent of the choice of local terms.
    Preview · Article · Aug 2011 · Physical Review Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Partitioning oracles were introduced by Hassidim et al. (FOCS 2009) as a generic tool for constant-time algorithms. For any ε > 0, a partitioning oracle provides query access to a fixed partition of the input bounded-degree minor-free graph, in which every component has size poly(1/ε), and the number of edges removed is at most εn, where n is the number of vertices in the graph. However, the oracle of Hassidim et al. makes an exponential number of queries to the input graph to answer every query about the partition. In this paper, we construct an efficient partitioning oracle for graphs with constant treewidth. The oracle makes only O(poly(1/ε)) queries to the input graph to answer each query about the partition. Examples of bounded-treewidth graph classes include k-outerplanar graphs for fixed k, series-parallel graphs, cactus graphs, and pseudoforests. Our oracle yields poly(1/ε)-time property testing algorithms for membership in these classes of graphs. Another application of the oracle is a poly(1/ε)-time algorithm that approximates the maximum matching size, the minimum vertex cover size, and the minimum dominating set size up to an additive εn in graphs with bounded treewidth. Finally, the oracle can be used to test in poly(1/ε) time whether the input bounded-treewidth graph is k-colorable or perfect.
    Full-text · Article · Jun 2011

Publication Stats

5k Citations
113.87 Total Impact Points

Institutions

  • 1970-2015
    • Massachusetts Institute of Technology
      • • Department of Mathematics
      • • Laboratory for Computer Science
      Cambridge, Massachusetts, United States
  • 2014
    • Distributed Artificial Intelligence Laboratory
      Berlín, Berlin, Germany
  • 2005
    • University of California, Berkeley
      • Computer Science Division
      Berkeley, California, United States
  • 1999
    • Hokkaido University
      • Division of Chemistry
      Sapporo, Hokkaidō, Japan