Abigail Crisp-Hihn

University of Cambridge, Cambridge, England, United Kingdom

Are you Abigail Crisp-Hihn?

Claim your profile

Publications (2)13.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fetomaternal alloimmune thrombocytopenia, caused by the maternal generation of antibodies against fetal Human Platelet Antigen-1a (HPA-1a) can result in intracranial haemorrhage and intrauterine death. We have developed a therapeutic human recombinant high affinity HPA-1a antibody (B2G1Δnab) that competes for binding to the HPA-1a epitope but carries a modified constant region that does not bind to Fc gamma receptors. In vitro studies with a range of clinical anti-HPA-1a sera have shown that B2G1Δnab blocks monocyte chemiluminescence by >75%. In this first-in-man study, we demonstrate that HPA-1a1b autologous platelets (matching fetal phenotype) sensitized with B2G1Δnab have the same intravascular survival as unsensitised platelets (190 hours), whilst platelets sensitized with a destructive IgG1 version of the antibody (B2G1) are cleared from the circulation in 2 hours. Mimicking the situation in fetuses receiving B2G1Δnab as therapy, we show that platelets sensitized with a combination of B2G1 (representing destructive HPA-1a antibody) and B2G1Δnab survive three times as long in circulation compared to platelets sensitized with B2G1 alone. This confirms the therapeutic potential of B2G1Δnab. The efficient clearance of platelets sensitized with B2G1 also opens up the opportunity to carry out studies of prophylaxis to prevent alloimmunisation in HPA-1a negative mothers.
    Full-text · Article · May 2013 · Blood
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large number of genome-wide association studies have been performed during the past five years to identify associations between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to obtain in large numbers.
    Full-text · Article · Dec 2012 · PLoS ONE