Yu Li

Chinese Academy of Agricultural Sciences, Peping, Beijing, China

Are you Yu Li?

Claim your profile

Publications (50)119.9 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 (ra3), Thick tassel dwarf1 (td1), tasselseed2 (ts2), liguleless2 (lg2), ramosa1 (ra1), barren stalk1 (ba1), branch silkless1 (bd1) and tasselseed6 (ts6). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O-methyl-transferase (e.g. GRMZM2G147491), helix-loop-helix (HLH) DNA-binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP-box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.
    No preview · Article · Jan 2016 · Plant Biotechnology Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Kernel length (KL) is one of the key traits related to kernel size in maize, but the underlying genetic mechanisms remain vague. The qKL1.07 locus, located in the long arm of Chromosome 1, has been identified frequently as a major QTL for KL. In the present study, using Mo17 as the donor parent and HZS the recurrent parent, we developed a series of backcross populations, including BC3F2, BC3F3 and BC3F4, to fine map qKL1.07. The results indicated that the region of qKL1.07 could be narrowed down to a 1.6 Mb interval flanked by two markers: ML194 and ML162. Furthermore, we performed the regional association analysis using a panel of 627 diverse inbred lines and four significant SNPs were detected to associate with the target trait within the interval of qKL1.07. When the results of the linkage mapping and association analysis were combined, the ZmCKX10 gene, encoding cytokinin oxidase, was supposed to be the candidate gene that is most likely responsible for qKL1.07.
    No preview · Article · Jan 2016 · Molecular Breeding
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Head smut, caused by the fungus Sphacelotheca reiliana (Kühn) Clint, is a devastating threat to maize production. In this study, QTL mapping of head smut resistance was performed using a recombinant inbred line (RIL) population from a cross between a resistant line “QI319” and a susceptible line “Huangzaosi” (HZS) with a genetic map constructed from genotyping-by-sequencing (GBS) data and composed of 1638 bin markers. Two head smut resistance QTL were identified, located on Chromosome 2 (q2.09HR) and Chromosome 5 (q5.03HR), q2.09HR is co-localized with a previously reported QTL for head smut resistance, and the effect of q5.03HR has been validated in backcross populations. It was also observed that pyramiding the resistant alleles of both QTL enhanced the level of resistance to head smut. A genome-wide association study (GWAS) using 277 diverse inbred lines was processed to validate the mapped QTL and to identify additional head smut resistance associations. A total of 58 associated SNPs were detected, which were distributed in 31 independent regions. SNPs with significant association to head smut resistance were detected within the q2.09HR and q5.03HR regions, confirming the linkage mapping results. It was also observed that both additive and epistastic effects determine the genetic architecture of head smut resistance in maize. As shown in this study, the combined strategy of linkage mapping and association analysis is a powerful approach in QTL dissection for disease resistance in maize.
    Full-text · Article · Dec 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Exploring genetic differentiation and genomic variation is important for both the utilization of heterosis and the dissection of the genetic bases of complex traits. Methods: We integrated 1857 diverse maize accessions from America, Africa, Europe and Asia to investigatetheir genetic differentiation, genomic variation using 43,252 high-quality single-nucleotide polymorphisms(SNPs),combing GWAS and linkage analysis strategy to exploring the function of relevant genetic segments. Results: We uncovered many more subpopulations that recently or historically formed during the breeding process. These patterns are represented by the following lines: Mo17, GB, E28, Ye8112, HZS, Shen137, PHG39, B73, 207, A634, Oh43, Reid Yellow Dent, and the Tropical/subtropical (TS) germplasm. A total of 85 highly differentiated regions with a DEST of more than 0.2 were identified between the TS and temperate subpopulations. These regions comprised 79 % of the genetic variation, and most were significantly associated with adaptive traits. For example, the region containing the SNP tag PZE.108075114 was highly differentiated, and this region was significantly associated with flowering time (FT)-related traits, as supported by a genome-wide association study (GWAS) within the interval of FT-related quantitative trait loci (QTL). This region was also closely linked to zcn8 and vgt1, which were shown to be involved in maize adaptation. Most importantly, 197 highly differentiated regions between different subpopulation pairs were located within an FT- or plant architecture-related QTL. Conclusions: Here we reported that 700-1000 SNPs were necessary needed to robustly estimate the genetic differentiation of a naturally diverse panel. In addition, 13 subpopulations were observed in maize germplasm, 85 genetic regions with higher differentiation between TS and temperate maize germplasm, 197 highly differentiated regions between different subpopulation pairs, which contained some FT- related QTNs/QTLs/genes supported by GWAS and linkage analysis, and these regions were expected to play important roles in maize adaptation.
    Full-text · Article · Oct 2015 · BMC Plant Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: A genome-wide association study (GWAS) is the foremost strategy used for finding genes that control human diseases and agriculturally important traits, but it often reports false positives. In contrast, its complementary method, linkage analysis, provides direct genetic confirmation, but with limited resolution. A joint approach, using multiple linkage populations, dramatically improves resolution and statistical power. For example, this approach has been used to confirm that many complex traits, such as flowering time controlling adaptation in maize, are controlled by multiple genes with small effects. In addition, genotyping by sequencing (GBS) at low coverage not only produces genotyping errors, but also results in large datasets, making the use of high-throughput sequencing technologies computationally inefficient or unfeasible. Results: In this study, we converted raw SNPs into effective recombination bins. The reduced bins not only retain the original information, but also correct sequencing errors from low-coverage genomic sequencing. To further increase the statistical power and resolution, we merged a new temperate maize nested association mapping (NAM) population derived in China (CN-NAM) with the existing maize NAM population developed in the US (US-NAM). Together, the two populations contain 36 families and 7,000 recombinant inbred lines (RILs). One million SNPs were generated for all the RILs with GBS at low coverage. We developed high-quality recombination maps for each NAM population to correct genotyping errors and improve the computational efficiency of the joint linkage analysis. The original one million SNPs were reduced to 4,932 and 5,296 recombination bins with average interval distances of 0.34 cM and 0.28 cM for CN-NAM and US-NAM, respectively. The quantitative trait locus (QTL) mapping for flowering time (days to tasseling) indicated that the high-density, recombination bin map improved resolution of QTL mapping by 50 % compared with that using a medium-density map. We also demonstrated that combining the CN-NAM and US-NAM populations improves the power to detect QTL by 50 % compared to single NAM population mapping. Among the QTLs mapped by joint usage of the US-NAM and CN-NAM maps, 25 % of the QTLs overlapped with known flowering-time genes in maize. Conclusion: This study provides directions and resources for the research community, especially maize researchers, for future studies using the recombination bin strategy for joint linkage analysis. Available resources include efficient usage of low-coverage genomic sequencing, detailed positions for genes controlling maize flowering, and recombination bin maps and flowering- time data for both CN and US NAMs. Maize researchers even have the opportunity to grow both CN and US NAM populations to study the traits of their interest, as the seeds of both NAM populations are available from the seed repository in China and the US.
    Full-text · Article · Sep 2015 · BMC Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to single-nucleotide polymorphisms, structural variation is abundant in many plant genomes. The structural variation across a species can be represented by a 'pan-genome', which is essential to fully understand the genetic control of phenotypes. However, the pan-genome's complexity hinders its accurate assembly via sequence alignment. Here we demonstrate an approach to facilitate pan-genome construction in maize. By performing 18 trillion association tests we map 26 million tags generated by reduced representation sequencing of 14,129 maize inbred lines. Using machine-learning models we select 4.4 million accurately mapped tags as sequence anchors, 1.1 million of which are presence/absence variations. Structural variations exhibit enriched association with phenotypic traits, indicating that it is a significant source of adaptive variation in maize. The ability to efficiently map ultrahigh-density pan-genome sequence anchors enables fine characterization of structural variation and will advance both genetic research and breeding in many crops.
    Full-text · Article · Apr 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plant architecture is a key factor for high productivity maize because ideal plant architecture with an erect leaf angle and optimum leaf orientation value allow for more efficient light capture during photosynthesis and better wind circulation under dense planting conditions. To extend our understanding of the genetic mechanisms involved in leaf-related traits, three connected recombination inbred line (RIL) populations including 538 RILs were genotyped by genotyping-by-sequencing (GBS) method and phenotyped for the leaf angle and related traits in six environments. We conducted single population quantitative trait locus (QTL) mapping and joint linkage analysis based on high-density recombination bin maps constructed from GBS genotype data. A total of 45 QTLs with phenotypic effects ranging from 1.2% to 29.2% were detected for four leaf architecture traits by using joint linkage mapping across the three populations. All the QTLs identified for each trait could explain approximately 60% of the phenotypic variance. Four QTLs were located on small genomic regions where candidate genes were found. Genomic predictions from a genomic best linear unbiased prediction (GBLUP) model explained 45±9% to 68±8% of the variation in the remaining RILs for the four traits. These results extend our understanding of the genetics of leaf traits and can be used in genomic prediction to accelerate plant architecture improvement.
    Full-text · Article · Mar 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We compared the grain quality of Chinese single- cross maize (Zea mays L.) initially released during the 1960s to 2000s, their parental inbreds, and a set of U.S. hybrids released during the 1960s and 2000s. Chinese hybrids showed lower starch concentrations and higher oil and protein concentrations compared with U.S. hybrids. Chinese hybrids showed a decadal increase of 0.81% in starch concentration, whereas U.S. hybrids showed an increase of 0.57%. Grain quality concentrations of Chinese hybrids exhibited more significant interactions with either planting density or with planting density × environment than did U.S. hybrids. Concentrations of oil, protein, and lysine decreased for Chinese hybrids, which coincided with the introduction and extensive use in China of U.S. maize germplasm during the 1970s and 1980s. Chinese hybrids released during the 1990s had similar kernel compositions to the U.S. hybrids. The kernel quality composition of Chinese hybrids and their mean parent values showed very similar trends during the 1960s to 2000s. Selection for high grain quality parental inbred lines in addition to selection for yield per se will be required if it is deemed important to elevate the grain quality attributes of Chinese maize hybrids.
    Full-text · Article · Jan 2015 · Crop Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: To measure the contributions of parental inbreds per se and heterosis to the genetic gain of single-cross maize (Zea mays L.) hybrids, yield trials of 29 historically important hybrids used in China during 1964 through 2001 and their parental inbreds were conducted. Mean rate of genetic gain for single-cross hybrids when measured across all locations was 55 kg ha(-1) yr(-1); heterosis contributed 37 kg ha(-1) yr(-1) (67%) of yield gain. Inbred yields at stressed locations were exceptionally poor and may have inflated measurements of heterosis. At unstressed locations, heterosis contributed 5 kg ha(-1) yr(-1) (8%) and 16 kg ha(-1) yr(-1) (39%) or 10 kg ha(-1) yr(-1) (19%) when locations were combined. For individual characteristics, the highest percent heterosis was for kernel weight per ear (58.6%), corresponding to and emphasizing the historic goal in China of increasing yield on an individual plant rather than on a unit area basis. There are opportunities to further improve the productivity of Chinese maize by increasing inbred parent yields, increasing tolerances to stresses associated with higher planting densities, and also increasing the contribution of heterosis through optimal assignation of inbreds into complementary heterotic groups.
    No preview · Article · Jan 2014 · Crop Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the genetic structure of Chinese maize germplasm, the MaizeSNP50 BeadChip with 56,110 single nucleotide polymorphisms (SNPs) was used to genotype a collection of 367 inbred lines widely used in maize breeding of China. A total of 41,819 informative SNPs with minor allele number of more than 0.05 were used to estimate the genetic diversity, relatedness, and linkage disequilibrium (LD) decay. Totally 1,015 SNPs evenly distributed in the genome were selected randomly to evaluate the population structure of these accessions. Results showed that two main groups could be determined i.e., the introduced germplasm and the local germplasm. Further, five subgroups corresponding to different heterotic groups, that is, Reid Yellow Dent (Reid), Lancaster Sure Crop (Lancaster), P group (P), Tang Sipingtou (TSPT), and Tem-tropic I group (Tem-tropic I), were determined. The genetic diversity of within subgroups was highest in the Tem-Tropic I and lowest in the P. Most lines in this panel showed limited relatedness with each other. Comparisons of gene diversity showed that there existed some conservative genetic regions in specific subgroups across the ten chromosomes, i.e., seven in the Lancaster, seven in the Reid, six in the TSPT, five in the P, and two in the Tem-Tropical I. In addition, the results also revealed that there existed fifteen conservative regions transmitted from Huangzaosi, an important foundation parent, to its descendants. These are important for further studies since the outcomes may provide clues to understand why Huangzaosi could become a foundation parent in Chinese maize breeding. For the panel of 367 elite lines, average LD distance was 391 kb and varied among different chromosomes as well as in different genomic regions of one chromosome. This analysis uncovered a high natural genetic diversity in the elite maize inbred set, suggesting that the panel can be used in association study, esp. for temperate regions.
    No preview · Article · Dec 2013 · Theoretical and Applied Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: SbSNAC1 is a member of the plant-specific NAC transcription factor superfamily that plays an important role in the abiotic stress response in sorghum. The SbSNAC1 protein consists of a typical NAC conserved domain at its N terminus and a diverse C-terminal region. The expression of SbSNAC1 was induced by various abiotic stresses, such as drought and salinity. SbSNAC1 is also expressed at a relatively higher concentration in roots and responds to the phytohormone abscisic acid. Transactivation analysis indicated that the transactivation activity of SbSNAC1 is located in the C-terminal region, whereas no activity was detected in the conserved NAC-domain, localized in the N-terminus. Subcellular localization assays using constructs of different SbSNAC1 fragments fused with green fluorescent protein revealed that the SbSNAC1 protein localized in the nucleus, and that the nuclear localization signal was present in the N-terminal section. Furthermore, transgenic plants overexpressing SbSNAC1 had an improved drought stress tolerance compared with wild-type plants, but no obvious retardation was detected in plant growth and development. These results suggest that SbSNAC1 has the potential to improve abiotic stress tolerance.
    No preview · Article · Dec 2013 · Plant Cell Tissue and Organ Culture
  • [Show abstract] [Hide abstract]
    ABSTRACT: Grain yield is one of the most important and complex quantitative traits in maize breeding. In the present study, a total of 11 connected RIL populations, derived from crosses between elite inbreed “Huangzaosi” as the common parent and 11 elite inbreeds, were evaluated for five yield components and kernel-related traits under six environments. Quantitative trait loci (QTL) were detected for the traits under each environment and in joint analysis across all environments for each population. A total of 146 major QTL with R2 > 10 % in at least one environment and also detected based on joint analysis across all environments were identified in the 11 populations. Lqkwei4 conferring kernel weight and Lqklen4-1 conferring kernel length both located in the adjacent marker intervals in bin 4.05 were stably expressed in four environments and in joint analysis across six environments, with the largest R2 over 27 and 24 % in a single environment, respectively. Moreover, all major QTL detected in the 11 populations were aligned on the IBM2 2008 neighbors reference map. Totally 16 common QTL (CQTL) were detected. Seven important CQTL (CQTL1-2, CQTL1-3, CQTL4-1, CQTL4-2, CQTL4-3, CQTL4-4, and CQTL6-1) were located in bin 1.07, 1.10, 4.03, 4.05, 4.08, 4.09 and 6.01–6.02, respectively. These chromosomal regions could be targets for fine mapping and marker-assisted selection.
    No preview · Article · Oct 2013 · Euphytica

  • No preview · Article · Aug 2013 · ACTA AGRONOMICA SINICA
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.
    Full-text · Article · Apr 2013 · PLoS ONE

  • No preview · Article · Jan 2013 · ACTA AGRONOMICA SINICA

  • No preview · Article · Jan 2013 · ACTA AGRONOMICA SINICA

  • No preview · Article · Jan 2013 · ACTA AGRONOMICA SINICA
  • [Show abstract] [Hide abstract]
    ABSTRACT: Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, \( \hat{r}_{\text{g}} \) (FP, TP), were low (0–0.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32–0.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, \( \hat{r}_{\text{g}} \) (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05–4.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects.
    No preview · Article · Nov 2012 · Theoretical and Applied Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: NAC proteins are plant-specific transcription factors that play essential roles in stress responses. However, only little information regarding stress-related NAC genes is available in maize. In this study, a maize NAC gene, ZmSNAC1, was cloned and functionally characterized. Expression analysis revealed that ZmSNAC1 was strongly induced by low temperature, high-salinity, drought stress, and abscisic acid (ABA) treatment, but downregulated by salicylic acid treatment. Subcellular localization experiments in Arabidopsis protoplast cells indicated that ZmSNAC1 was localized in the nucleus. Transactivation assays demonstrated that ZmSNAC1 functioned as a transcriptional activator. Overexpression of ZmSNAC1 in Arabidopsis led to hypersensitivity to ABA and osmotic stress at the germination stage, but enhanced tolerance to dehydration compared to wild-type seedlings. These results suggest that ZmSNAC1 functions as a stress-responsive transcription factor in positive modulation of abiotic stress tolerance, and may have applications in the engineering of drought-tolerant crops. Key message ZmSNAC1 functioned as a stress-responsive transcription factor in response to abiotic stresses, and might be useful for crop tolerance improvement.
    No preview · Article · May 2012 · Plant Cell Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: MADS-box genes encode a family of transcription factors, which control diverse developmental processes in flowering plants, with organs ranging from roots, flowers and fruits. In this study, six maize cDNAs encoding MADS-box proteins were isolated. BLASTX searches and phylogenetic analysis indicated that the six MADS-box genes belonging to the AGL2-like clade. qRT-PCR analysis revealed that these genes had differential expression patterns in different organs in maize. The results of yeast one-hybrid system indicated that the protein ZMM3-1, ZMM3-2, ZMM6, ZMM7-L, ZMM8-L and ZMM14-L had transcriptional activation activity. Subcellular localization of ZMM7-L demonstrated that the fluorescence of ZMM7-L-GFP was mainly detected in the nuclei of onion epidermal cells. qRT-PCR analysis for expression pattern of ZMM7-L showed that the gene was up-regulated by abiotic stresses and down-regulated by exogenous ABA. The germination rates of over-expression transgenic lines were lower than that of the wild type on medium with 150 mM NaCl, 350 mM mannitol. These results indicated that ZMM7-L might be a negative transcription factor responsive to abiotic stresses.
    No preview · Article · Mar 2012 · Journal of plant physiology

Publication Stats

708 Citations
119.90 Total Impact Points

Institutions

  • 1995-2015
    • Chinese Academy of Agricultural Sciences
      • • Institute of Crop Sciences
      • • Institute of Crop Germplasm Resources
      Peping, Beijing, China
  • 2009-2010
    • Huazhong Agricultural University
      • National Key Laboratory of Crop Genetic Improvement
      Wu-han-shih, Hubei, China
  • 2008
    • French National Institute for Agricultural Research
      Lutetia Parisorum, Île-de-France, France