Y. Liu

University of Surrey, Guilford, England, United Kingdom

Are you Y. Liu?

Claim your profile

Publications (1)3.45 Total impact

  • Source
    Y. Liu · R. Hoshyar · X. Yang · R. Tafazolli
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, the notion that a logical next step towards future mobile radio networks is to introduce multihop relaying into cellular networks, has gained wide acceptance. Nevertheless, due to the inherent drawbacks of multihop relaying, e.g., the requirement for extra radio resources for relaying hops, and the sensitivity to the quality of relaying routes, multihop cellular networks (MCNs) require a well-designed radio resource allocation strategy in order to secure performance gains. In this paper, the optimal radio resource allocation problem in MCNs, with the objective of throughput maximization, is formulated mathematically and proven to be NP-hard. Considering the prohibitive complexity of finding the optimal solution for such an NP-hard problem, we propose an efficient heuristic algorithm, named integrated radio resource allocation (IRRA), to find suboptimal solutions. The IRRA is featured as a low-complexity algorithm that involves not only base station (BS) resource scheduling, but also routing and relay station (RS) load balancing. Specifically, a load-based scheme is developed for routing. A mode-aware BS resource-scheduling scheme is proposed for handling links in different transmission modes, i.e., direct or multihop. Moreover, a priority-based RS load balancing approach is presented for the prevention of the overloading of RSs. Within the framework of the IRRA, the above three functions operate periodically with coordinated interactions. To prove the effectiveness of the proposed IRRA algorithm, a case study was carried out based on enhanced uplink UMTS terrestrial radio access/frequency-division duplex with fixed RSs. The IRRA is evaluated through system level simulations, and compared with two other cases: 1) nonrelaying and 2) relaying with a benchmark approach. The results show that the proposed algorithm can ensure significant gains in terms of cell throughput
    Full-text · Article · Dec 2006 · IEEE Journal on Selected Areas in Communications