Yoshio Yamamoto

Iwate University, Morioka, Iwate, Japan

Are you Yoshio Yamamoto?

Claim your profile

Publications (102)140.55 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In general, the nasal cavity of turtles is divided into two chambers: the upper chamber, lined with the olfactory epithelium containing ciliated olfactory receptor cells, and the lower chamber, lined with the vomeronasal epithelium containing microvillous receptor cells. In the nasal cavity of soft-shelled turtles, however, differences between the upper and lower chamber epithelia are unclear due to the presence of ciliated receptor cells in both epithelia. In the olfactory organ of vertebrates, the surface of sensory epithelium is covered with secretory products of associated glands and supporting cells, playing important roles in the olfaction by dissolving odorants and transporting them to the olfactory receptors. Here, the associated glands and supporting cells in the olfactory organ of soft-shelled turtles were analyzed histochemically and ultrastructurally. The upper chamber epithelium possessed associated glands, constituted by cells containing serous secretory granules; whereas, the lower chamber epithelium did not. In the upper chamber epithelium, secretory granules filled the supranuclear region of supporting cells, while most of the granules were distributed near the free border of supporting cells in the lower chamber epithelium. The secretory granules in the supporting cells of both epithelia were seromucous, but alcian blue stained them differently from each other. In addition, distinct expression of carbohydrates was suggested by the differences in lectin binding. These data indicate the quantitative and qualitative differences in the secretory properties between the upper and lower chamber epithelia, suggesting their distinct roles in the olfaction.
    Preview · Article · Jan 2016 · Journal of Veterinary Medical Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aims: To elucidate an entry site of staphylococcal enterotoxin A (SEA), which is a major toxin for staphylococcal foodborne poisoning, into gastrointestinal tissue using a house musk shrew model. Methods and results: House musk shrews were perorally administered with recombinant SEA and localization of SEA in gastrointestinal tissues was investigated by immunohistochemistry and immunoelectron microscopy 30 min after administration. SEA was detected in a subset of intestinal epithelial cells and lamina propria in the villi of jejunum and ileum. This observation was also found in gastrointestinal loops. Morphological characteristics of the SEA-immunopositive cells indicated that goblet cells are an entry site of SEA. SEA entered mucus-expelling goblet cells and the induction of mucus secretion by alyll isothiocyanate resulted in an intensive SEA signal. These results suggest that mucus secretion by goblet cells is important for translocation of SEA. Conclusions: SEA can translocate across intestinal epithelia via mucus-expelling goblet cells. Significance and impacts of the study: An entry site of SEA during translocation across the gastrointestinal mucosal barrier was investigated. This study was the first to demonstrate the significance of goblet cells as an entry site of this bacterial toxin. This article is protected by copyright. All rights reserved.
    No preview · Article · Dec 2015 · Journal of Applied Microbiology
  • Natsumi Takahashi · Nobuaki Nakamuta · Yoshio Yamamoto
    [Show abstract] [Hide abstract]
    ABSTRACT: The morphological characteristics of P2X3-immunoreactive nerve endings in the laryngeal mucosa were herein examined using immunohistochemistry with confocal laser microscopy. Ramified intraepithelial nerve endings immunoreactive to P2X3 were distributed in the epiglottis and arytenoid region. The axon terminals of P2X3-immunoreactive ramified endings were beaded or flat in shape. These endings were also immunoreactive to P2X2 and not identical to the nerve endings immunoreactive to Na(+)-K(+)-ATPase α3-subunit, substance P (SP), and calcitonin gene-related peptide (CGRP). P2X3-immunoreactive axon terminals were also immunoreactive to vGLUT1, vGLUT2, and vGLUT3. In addition to ramified endings, P2X3-immunoreactive nerve endings were associated with α-gustducin-immunoreactive solitary chemosensory cells and/or SNAP25-immunoreactive neuroendocrine cells. Furthermore, P2X3-immunoreactive nerve endings were also observed in the taste bud-like chemosensory cell clusters of the stratified squamous epithelium covering epiglottic and arytenoid cartilage. The P2X3-immunoreactive nerve endings that associated with sensory and/or endocrine cells and chemosensory cell clusters were also immunoreactive to P2X2, vGLUT1, vGLUT2, and vGLUT3, but not to SP or CGRP. In conclusion, P2X3-immunoreactive nerve endings may be classified into two types, i.e., intraepithelial ramified nerve endings and nerve endings associated with chemosensory cells and neuroendocrine cells.
    No preview · Article · Oct 2015 · Histochemie
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In turtles, the epithelia lining the upper and lower chambers of the nasal cavity project axons to the ventral and dorsal parts of the olfactory bulbs, respectively. In a semi-aquatic soft-shelled turtle, Pelodiscus sinensis, more than 1,000 odorant receptor genes have been found, but it is not known where they are expressed. In this study, we aimed to clarify the distribution of cells expressing these genes in the olfactory organs of soft-shelled turtles. Immunoreactions for the Gαolf, the α subunit of G protein coupled to the odorant receptors, were detected on the surface of epithelia lining both the upper and lower chambers of the nasal cavity. The receptor cells in the epithelium of both chambers possessed cilia on the tip of their dendrites, whereas microvillous, non-ciliated, receptor cells were not found. These data suggest that the odorant receptor genes are expressed by the ciliated receptor cells in the upper and lower chamber epithelia. Precise location of the vomeronasal epithelium is not known at present.
    Preview · Article · Oct 2015 · Journal of Veterinary Medical Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine modulates the chemosensitivity of arterial chemoreceptors, and dopamine D2 receptor (D2R) is expected to localize in the glomus cells and/or sensory nerve endings of the carotid body. In the present study, the localization of D2R in the rat carotid body was examined using double immunofluorescence for D2R with various cell markers. D2R immunoreactivity was mainly localized in glomus cells immunoreactive to tyrosine hydroxylase or dopamine β-hydroxylase (DBH), but not in S100B-immunoreactive sustentacular cells. Furthermore, D2R immunoreactivity was observed in petrosal ganglion cells and nerve bundles in the carotid body, but not in the nerve endings with P2X2 immunoreactivity. In the carotid ganglion, a few punctate D2R-immunoreactive products were detected in DBH-immunoreactive nerve cell bodies. These results showed that D2R was mainly distributed in glomus cells, and suggested that D2R plays a role in the inhibitory modulation of chemosensory activity in a paracrine and/or autocrine manner. Copyright © 2015 Elsevier GmbH. All rights reserved.
    No preview · Article · Aug 2015 · Acta histochemica
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory responses to hypoxia and/or hypercapnia, and their relationship to neural activity in the ventrolateral medulla (VLM), which includes the respiratory center, have not yet been elucidated in detail. We herein examined respiratory responses during exposure of 10% O2 (hypoxia), 10% CO2 (hypercapnia), and 10% O2-10% CO2 (hypercapnic hypoxia) using plethysmography. In addition to recording respiration, Fos expressions were examined in the VLM of the rat exposed to each gas to analyze neural activity. Respiratory frequency was increased in rats exposed to hypoxia, and Fos-positive neurons were observed in the caudal VLM (cVLM) and medial VLM (mVLM). Tidal volume was increased in rats exposed to hypercapnia, and Fos-positive neurons were observed in the rostral VLM (rVLM) includes the retrotrapezoid nucleus (RTN) and mVLM. Tidal volume was enhanced in rats exposed to hypercapnic hypoxia, similar to that in hypercapnia-exposed rats, and Fos-positive neurons were observed in the entire region of the VLM. In the mVLM and cVLM, double immunofluorescence showed Fos-immunoreactive nerve cells were also immunoreactive to dopamine β-hydroxylase, the marker for A1/C1 catecholaminergic neuron. These results suggested that hypoxia and hypercapnia modulated rhythmogenic microcircuits in the mVLM via A1/C1 neurons and the RTN, respectively. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · May 2015 · Respiratory Physiology & Neurobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the development of the olfactory organs of camel. In this study, prenatal development and neuronal differentiation of the vomeronasal organ (VNO) and the olfactory epithelium (OE) of the one-humped camel were studied by immunohistochemistry and lectin histochemistry. A neuronal marker, protein gene product (PGP) 9.5, but not a marker of fully differentiated olfactory receptor cells, olfactory marker protein, intensely labeled the olfactory receptor cells of the VNO and OE at 395 mm, 510 mm, and 530 mm fetal ages, indicating that the olfactory receptor cells are differentiated, but not fully matured both in the VNO and the OE. In 187 mm and 190 mm fetuses, PGP 9.5 yielded faint immunoreactive signals in the VNO, but not in the OE, although the presence of olfactory receptor cells were demonstrated in both tissues by intense WGA and LEL stainings. We conclude that the camel VNO and OE bear differentiated, but still immature receptor cells; in addition, the onset of neuronal differentiation seems to be somewhat earlier in the VNO than in the OE till half of the prenatal life. Microsc. Res. Tech., 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · May 2015 · Microscopy Research and Technique
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we examined serotonin (5-HT)-induced intracellular Ca(2+) ([Ca(2+)]i) responses to hypoxia in glomus cells isolated from carotid body (CB) of the rat. 5-HT did not induce any [Ca(2+)]i responses in clustered glomus cells during normoxia (21% O2), whereas the perfusion of hypoxic solution (1% O2) induced repetitive increases in [Ca(2+)]i in the same specimens. The frequency and magnitude of hypoxia-induced [Ca(2+)]i changes observed in the glomus cells were enhanced in the presence of 5-HT, and this response was inhibited by the 5-HT2 receptor antagonist, ketanserin. Furthermore, RT-PCR analysis detected the expression of 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, and 5-HT3B receptor mRNAs in extracts of the CB. These results suggest that 5-HT increases hypoxia-induced [Ca(2+)]i responses in glomus cells. 5-HT may elevate hypoxic responses in glomus cells in order to increase chemosensory activity of the CB. Copyright © 2015. Published by Elsevier Ireland Ltd.
    No preview · Article · Apr 2015 · Neuroscience Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-induced chemosensory activity in the carotid body (CB) may be enhanced by the sympathetic regulation of vascular tone in the CB. In the present study, we recorded cervical sympathetic nerve activity in rats exposed to hypoxia, and examined noradrenaline (NA)- and serotonin (5-HT)-induced intracellular Ca2+ ([Ca2+]i) responses in smooth muscle cells and pericytes in isolated blood vessels from the CB. Multifiber electrical activity recorded from the cervical sympathetic trunk was increased during the inhalation of hypoxic gas. NA induced [Ca2+]i increases in smooth muscle cells in arteriole specimens, whereas 5-HT did not cause any [Ca2+]i responses. However, NA did not induce [Ca2+]i increases in pericytes in capillaries, whereas 5-HT did and this response was inhibited by the 5-HT2 receptor antagonist, ketanserin. In conclusion, cervical sympathetic nerves enhanced by hypoxia may reduce blood flow in the CB in order to increase chemosensitivity. Thus, hypoxic chemosensitivity in the CB may involve a positive feedback mechanism via sympathetic nerves.
    No preview · Article · Nov 2014 · Brain Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sympathetic ganglion contains small intensely fluorescent (SIF) cells derived from the neural crest. We morphologically characterize SIF cells and focus on their relationship with ganglionic cells, preganglionic nerve fibers and sensory nerve endings. SIF cells stained intensely for tyrosine hydroxylase (TH), with a few cells also being immunoreactive for dopamine β-hydroxylase (DBH). Vesicular acetylcholine transporter (VAChT)-immunoreactive puncta were distributed around some clusters of SIF cells, whereas some SIF cells closely abutted DBH-immunoreactive ganglionic cells. SIF cells contained bassoon-immunoreactive products beneath the cell membrane at the attachments and on opposite sites to the ganglionic cells. Ganglion neurons and SIF cells were immunoreactive to dopamine D2 receptors. Immunohistochemistry for P2X3 revealed ramified nerve endings with P2X3 immunoreactivity around SIF cells. Triple-labeling for P2X3, TH and VAChT allowed the classification of SIF cells into three types based on their innervation: (1) with only VAChT-immunoreactive puncta, (2) with only P2X3-immunoreactive nerve endings, (3) with both P2X3-immunoreactive nerve endings and VAChT-immunoreactive puncta. The results of retrograde tracing with fast blue dye indicated that most of these nerve endings originated from the petrosal ganglion. Thus, SIF cells in the superior cervical ganglion are innervated by preganglionic fibers and glossopharyngeal sensory nerve endings and can be classified into three types. SIF cells might modulate sympathetic activity in the superior cervical ganglion.
    No preview · Article · Nov 2014 · Cell and Tissue Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examined ATP-induced intracellular Ca2+ ([Ca2+]i) responses in the neurons and satellite cells from one of the viscerosensory ganglia, the nodose ganglion (NG), as well as the GABA-mediated modulation of ATP-induced neuronal [Ca2+]i responses using intracellular calcium imaging. In neurons with satellite cells, ATP induced [Ca2+]i increases in both the neurons and satellite cells. The P2X receptor agonist, α,β-meATP, induced [Ca2+]i increases in neurons and this response was inhibited by the P2X receptor antagonist, PPADS. On the other hand, the P2Y receptor agonist, ADP, induced [Ca2+]i increases in satellite cells, and this response was inhibited by the P2Y receptor antagonist, MRS2179. RT-PCR detected the expression of P2X2, P2X3, P2Y1, and P2Y2 receptor mRNAs in NG extracts. Immunohistochemistry revealed that NG neurons and satellite cells were immunoreactive to P2X2 and P2X3, and P2Y1 and P2Y2 receptors, respectively. In isolated neurons, the ATP-evoked [Ca2+]i increase was inhibited by GABA. However, in neurons with satellite cells, the GABAA receptor antagonist, bicuculline, enhanced the ATP-induced [Ca2+]i increase in neurons. These results suggest that viscerosensory neuronal excitability may be modulated by GABA from satellite cells in NG.
    No preview · Article · Oct 2014 · Neuroscience Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuronal elements of the vomeronasal organ (VNO) of camel were investigated immunohistochemically. PGP 9.5 labeled the receptor cells in the vomeronasal sensory epithelium, but not the supporting or basal cells. OMP stained some receptor cells, but no immunoreactive signals for OMP were detected in the non-sensory epithelium. PLCβ2 labeled scattered cells in the sensory epithelium and a larger number of cells in the non-sensory epithelium. Double labeling immunohistochemistry revealed that the PLCβ2-positive cells were surrounded by substance P-positive nerve fibers. Collectively, these data suggest that the camel VNO bears, in addition to the mature vomeronasal receptor cells, trigeminally-innervated solitary chemosensory cells which are expected to play a substantial role in the control of stimulus access to the VNO.
    Full-text · Article · Oct 2014 · Journal of Veterinary Medical Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, immunohistochemical analysis has been performed using neuronal markers (GAP43, NCAM and PGP 9.5) to characterize the epithelial invagination in the medial wall of the olfactory pit in the chick embryos. At stages 26–27, the epithelial invagination was primarily composed of characteristic round-shaped cells, which were negative for neuronal markers. These cells were also found in the medial wall of the olfactory pit at stage 24, whereas the epithelial invagination was not observed at any stages other than stages 26–27. The possible relationship between the round-shaped cells and the migratory cells is discussed.
    Full-text · Article · Sep 2014 · Journal of Veterinary Medical Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The carotid body is a peripheral chemoreceptor that detects decreases in arterial pO2 and subsequently activates the carotid sinus nerve. The hypoxia-evoked activity of the carotid sinus nerve has been suggested to be modulated by glutamate. In the present study, we investigate the immunohistochemical localization of vesicular glutamate transporters in the carotid body of the rat. Vesicular glutamate transporter 2 (VGLUT2) labeling was closely associated with glomus cells immunoreactive to tyrosine hydroxylase but was not in the cytoplasm of these cells. The VGLUT2 immunoreactivity was observed within nerve endings that were immunoreactive to P2X3 and densely localized inside P2X3-immunoreactive axon terminals. These results suggest that VGLUT2 is localized in the afferent nerve terminals of the carotid body. Glutamate may be released from afferent nerve terminals to modulate the chemosensory activity of the carotid body.
    No preview · Article · Jun 2014 · Cell and Tissue Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The olfactory and respiratory mucosae of the Corriedale sheep were examined using lectin histochemistry in order to clarify the histochemical and glycohistochemical differences between these two tissues. The olfactory epithelium was stained with 13 lectins out of 21 lectins examined, while the respiratory epithelium was positive to 16 lectins. The free border of both of the olfactory and respiratory epithelia was stained with 12 lectins: Wheat germ agglutinin (WGA), succinylated-wheat germ agglutinin (s-WGA), Lycopersicon esculentum lectin (LEL), Solanum tuberosum lectin (STL), Datura stramonium lectin (DSL), Soybean agglutinin (SBA), Bandeiraea simplicifolia lectin-I (BSL-I), Ricinus communis agglutinin-I (RCA-120), Erythrina cristagalli lectin (ECL), Concanavalin A (Con A), Phaseolus vulgaris agglutinin-E (PHA-E) and Phaseolus vulgaris agglutinin-L (PHA-L). The associated glands of the olfactory mucosa, Bowman's glands, were stained with 13 lectins. While both the goblet cells and mucous nasal glands were stained with eight lectins; five of them (WGA, s-WGA, STL, Vicia villosa agglutinin (VVA) and ECL) were mutually positive among the Bowman's glands, mucous nasal glands and the goblet cells. These findings indicate that the glycohistochemical characteristics of the free borders of both olfactory and respiratory epithelia are similar to each other, suggesting that secretions from the Bowman's glands and those of the goblet cells and mucous nasal glands are partially exchanged between the surface of two epithelia to contribute the functions of the respiratory epithelium and the olfactory receptor cells, respectively.
    Preview · Article · Nov 2013 · Journal of Veterinary Medical Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In vitro cell studies might be a useful tool for studying tendon pathology, but no suitable in vitro models exist for tendon disorders. The purpose of this study was to confirm whether cell scratch culture using tendon-derived fibroblasts can provide a suitable in vitro tendon disorder model. Extracellular matrix components were examined immunohistochemically in tendon tissue, and then their related gene expression levels were analyzed by conventional reverse transcription polymerase chain reaction (RT-PCR) and/or quantitative real-time RT-PCR in tissues and cells. Collagen type I (Col I), collagen type III (Col III), tenascin-C (TN-C) and cartilage oligomeric matrix protein (COMP) were detected in tendon tissue sections, and RT-PCR confirmed their expression in tendon tissue and cells. Cells that had been cultured from explanted tendon tissue maintained the characteristics of in vivo tendon cells. The combination of TN-C and COMP might be a useful marker of tendon cells because they display more tendon-specific expression than Col I and III. In particular, the significant increase of TN-C mRNA expression in the scratch wound assay, at 12 hr after scratching, concomitant with the regeneration of the cell sheet, indicates its crucial role in tendon cell proliferation and migration. Thus, TN-C appears to be a key factor in tendon wound healing. In vitro cell scratch assays using tendon cells appear to mimic the repair of tendon tissue after injury.
    Preview · Article · Jun 2013 · Journal of Equine Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that serotonin (5-HT) facilitates the chemosensory activity of the carotid body (CB). In the present study, we investigated mRNA expression and immunohistochemical localization of the 5-HT synthetic enzyme isoforms, tryptophan hydroxylase 1 (TPH1) and TPH2, and the 5-HT plasma membrane transport protein, 5-HT transporter (SERT), in the CB of the rat. RT-PCR analysis detected the expression of mRNA for TPH1 and SERT in extracts of the CB. Using immunohistochemistry, 5-HT immunoreactivity was observed in a few glomus cells. TPH1 and SERT immunoreactivities were observed in almost all glomus cells. SERT immunoreactivity was seen on nerve fibers with TPH1 immunoreactivity. SERT immunoreactivity was also observed in varicose nerve fibers immunoreactive for dopamine beta-hydroxylase, but not in nerve fibers immunoreactive for vesicular acetylcholine transporters or nerve terminals immunoreactive for P2X(3) purinoreceptors. These results suggest that 5-HT is synthesized and released from glomus cells and sympathetic nerve fibers in the CB of the rat, and that the chemosensory activity of the CB is regulated by 5-HT from glomus cells and sympathetic nerve fibers.
    No preview · Article · Dec 2012 · Histochemie
  • Kouki Kato · Yoshio Yamamoto
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term hypoxia (days to weeks) increases phosphorylation of tyrosine hydroxylase (TH) at Ser31 and Ser40 in the carotid body (CB). In the present study, we examined the time course of TH phosphorylation at Ser31 and Ser40 in CB of rats exposed to short-term hypoxia (within 1 day) for 0-24h. Using immunoblotting, the signal intensities of both phosphorylated TH were more intense in CB of rats exposed to hypoxia for 6, 12, 18, and 24h than those of controls. Using immunohistochemistry, immunoreactive intensities of both phosphorylated TH were significantly more intense in glomus cells after rats were exposed to hypoxia for 6, 12, 18, and 24h than those of controls (p<0.05). These results show that phosphorylation of TH at Ser31 and Ser40 is increased in CB glomus cells by short-term hypoxia, suggesting that activation of TH via phosphorylation contributes to the facilitation of catecholamine biosynthesis in CB glomus cells at an early stage of hypoxia.
    No preview · Article · Nov 2012 · Respiratory Physiology & Neurobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Under long-term hypoxia, noradrenaline (NA) content in the carotid body (CB) increases, suggesting that NA plays an important role in CB chemotransduction. However, it is unknown whether short-term hypoxia upregulates NA biosynthesis in CB. Therefore, we examined dopamine β-hydroxylase (DBH) expression in the CB of rats exposed to hypoxia (10% O2) for 0 to 24 hr with immunoblotting and immunohistochemistry. Using immunoblotting, the signal intensity for DBH appeared to be the most intense in rats exposed to hypoxia for 12 hr. Using immunohistochemistry, DBH immunoreactivity was observed in the cytoplasm of some glomus cells and varicosities in controls and rats exposed to hypoxia for 6 hr. In rats exposed to hypoxia for 12 hr, DBH immunoreactive intensities in DBH-positive glomus cells were significantly higher compared with controls (p<0.05). In the CB of rats exposed to hypoxia for 18 and 24 hr, DBH immunoreactive intensities in DBH-positive glomus cells were significantly lower than that of rats exposed to hypoxia for 12 hr (p<0.05). These results demonstrate that DBH immunoreactivity is transiently increased in glomus cells by short-term hypoxia, suggesting that NA biosynthesis is transiently facilitated in glomus cells at an early stage of hypoxia.
    No preview · Article · Sep 2012 · Journal of Histochemistry and Cytochemistry
  • Kouki Kato · Jun Wakai · Hideki Matsuda · Tatsumi Kusakabe · Yoshio Yamamoto
    [Show abstract] [Hide abstract]
    ABSTRACT: Under hypertension, it has been reported that the carotid body (CB) is enlarged and noradrenaline (NA) content in CB is increased. Therefore, it is hypothesized that morphological and neurochemical changes in CB are induced in hypertensive animal models. In the present study, we examined the morphological features and dopamine β-hydroxylase (DBH) immunoreactivity in CB of spontaneously hypertensive rats (SHR/Izm) and Wistar Kyoto rats (WKY/Izm). The CB of SHR/Izm was elongated in terms of the cross section of center and was enlarged in the reconstructed images compared with that of WKY/Izm, and the total volume of CB in SHR/Izm (0.048 ± 0.004 mm³) was significantly (p<0.05) increased compared with the value in WKY/Izm (0.032 ± 0.006 mm³). By immunohistochemistry, immunoreactivity for tyrosine hydroxylase in CB was mainly observed in glomus cells and the immunostaining properties were similar between WKY/Izm and SHR/Izm. On the other hand, DBH immunoreactivity was mainly observed in nerve fibers around blood vessels and observed in a few glomus cells in CB of WKY/Izm. The number of glomus cells with strong DBH immunoreactivity was increased in SHR/Izm compared with that in WKY/Izm. In conclusion, the present study exhibited the enlargement of CB as three-dimensional image and revealed the enhanced immunoreactivity for DBH of glomus cells in SHR/Izm. These results suggest that the morphology of CB is affected by the effect of sympathetic nerve and that the signal transduction from CB is regulated by NA in glomus cells under hypertensive conditions.
    No preview · Article · Apr 2012 · Autonomic neuroscience: basic & clinical

Publication Stats

820 Citations
140.55 Total Impact Points


  • 2002-2015
    • Iwate University
      • Faculty of Agriculture
      Morioka, Iwate, Japan
  • 1994-2015
    • Gifu University
      • • Department of Basic Veterinary Science
      • • Laboratory of Veterinary Anatomy
      Gihu, Gifu, Japan
  • 2003-2006
    • Justus-Liebig-Universität Gießen
      • Department of Anaesthesiology and Intensive Care Medicine
      Gieben, Hesse, Germany
  • 1991
    • Obihiro University of Agriculture and Veterinary Medicine
      • Department of Veterinary Anatomy
      Obihiro, Hokkaido, Japan