Publications (3)9.85 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Changes in Na+ transport in rat alveolar type II (ATII) cells during culture were quantified and related to alterations in spatial distribution of proteins antigenically related to amiloride-sensitive Na+ channels. Adult rat ATII cells were cultured for periods ranging from 24 to 96 h. When patch clamped in the whole cell mode, both freshly isolated and cultured ATII cells exhibited outwardly rectified Na+ currents. At 0 and 24 h in culture, these currents were equally inhibited by amiloride, benzamil, and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride (inhibitory constant approximately 1 microM). These conductive pathways were equally permeable to Na+ and K+. Immunocytochemical localization at 0 or 24 h in culture revealed the presence of plasma membrane antigenic sites; after 48 h, the appearance of intracellular antigenic sites increased significantly. A single band of molecular mass 135 kDa in membrane proteins of freshly isolated ATII cells was recognized in Western blots; at 48 h in culture, two lower bands with molecular masses of 75 and 65 kDa were detected in either membrane or cytoplasmic proteins. Photolabeling with 2'-methoxy-5'-nitrobenzamil showed that the 135-, 75-, and 65-kDa bands contained amiloride-binding sites. These results suggest the presence of low amiloride affinity conductive pathways in freshly isolated and cultured ATII cells. Culturing ATII cells resulted in internalization and possible breakdown of these pathways and decreased Na+ transport.
    No preview · Article · Oct 1993 · The American journal of physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the mechanism by which vasopressin increases apical membrane Na+ entry, we evaluated whether or not this hormone could recruit Na+ channels from a subapical membrane pool using specific polyclonal antibodies raised against high amiloride affinity bovine renal papillary Na+ channels. We also studied the effect of protein kinase A (PKA)-mediated phosphorylation on single-channel activity of highly purified Na+ channels incorporated into planar lipid bilayer membranes. PKA induced a significant increase in open-channel probability (Po) with no change in single-channel conductance. As shown previously and reconfirmed in the present work, PKA catalyzed the phosphorylation of a single subunit of this Na+ channel protein, namely, a 300-kDa polypeptide. On the other hand, protein kinase C, in combination with diacylglycerol, Ca2+, and phosphatidylserine, phosphorylated both the 130- and 55-kDa subunits of this purified Na+ channel, with a concomitant decrease in Po of both untreated and previously PKA-treated channels. We also found, in expression studies conducted in confluent monolayers of amphibian renal A6 cells, that vasopressin did not induce the apical insertion of new channel proteins. These observations support the hypothesis that vasopressin increases the apical Na+ permeability by activating Na+ channels already resident in the apical membrane by a direct phosphorylation mechanism rather than by cytoplasmic recruitment of latent Na+ channels.
    No preview · Article · Aug 1993 · The American journal of physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to document the existence, assess the spatial localization, and characterize some of the transport properties of proteins antigenically related to epithelial Na+ channels in freshly isolated rabbit and rat alveolar type II (ATII) cells. ATII cells, isolated by elastase digestion of lung tissue and purified by density-gradient centrifugation, were incubated with polyclonal antibodies raised against Na+ channel protein purified from beef kidney papilla (NaAb), followed by a secondary antibody (goat antirabbit immunoglobulin G conjugated to fluorescein isothiocyanate). Rat ATII cells exhibited specific staining with NaAb at the level of the plasma membrane, which, in most cells, colocalized with that of the lectin Maclura pomiferra agglutinin, an apical surface marker. In Western blots, NaAb specifically recognized a 135 +/- 10-kDa protein in rat ATII membrane vesicles. When patch clamped in the whole cell mode using symmetrical solutions (150 mM Na+ glutamate), ATII cells exhibited outwardly rectified Na+ currents that were diminished by amiloride (10-100 microM) instilled into the bath solution. Ion substitution studies showed that the conductive pathways were three times more permeable to Na+ than K+. Amiloride, benzamil, and 5-(N-ethyl-N-isopropyl)-2',4'-amiloride were equally effective in diminishing 22Na+ flux into rabbit and rat ATII cells (45% inhibition at 100 microM, with IC50 of approximately 1 microM for all inhibitors). Tetraethylammonium chloride (10 mM) or BaCl2 (2 mM), well-known K+ channel blockers, had no effect on 22Na+ uptake. These results indicate that ATII cells express an amiloride-sensitive Na+ conductance, probably a channel, with a lower affinity for amiloride and its structural analogues than the well-established amiloride-sensitive Na+ channels found in bovine renal papila and cultured amphibian A6 kidney cells.
    No preview · Article · Jun 1992 · The American journal of physiology