Y.-H. Chu

Academia Sinica, T’ai-pei, Taipei, Taiwan

Are you Y.-H. Chu?

Claim your profile

Publications (204)390.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present deep XMM–Newton European Photon Imaging Camera observations of the Wolf–Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s−1 in the 0.3–1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm−3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.
    No preview · Article · Dec 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss our most recent findings on the diffuse X-ray emission from Wolf-Rayet (WR) nebulae. The best-quality X-ray observations of these objects are those performed by XMM-Newton and Chandra towards S308, NGC2359, and NGC6888. Even though these three WR nebulae might have different formation scenarios, they all share similar characteristics: i) the main plasma temperatures of the X-ray-emitting gas is found to be $T$=[1-2]$\times$10$^{6}$ K, ii) the diffuse X-ray emission is confined inside the [O III] shell, and iii) their X-ray luminosities and electron densities in the 0.3-2.0~keV energy range are $L_\mathrm{X}\approx$10$^{33}$-10$^{34}$~erg~s$^{-1}$ and $n_\mathrm{e}\approx$0.1-1~cm$^{-3}$, respectively. These properties and the nebular-like abundances of the hot gas suggest mixing and/or thermal conduction is taking an important role reducing the temperature of the hot bubble.
    No preview · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a comprehensive X-ray study of the population of supernova remnants (SNRs) in the LMC. Using primarily XMM-Newton, we conduct a systematic spectral analysis of LMC SNRs to gain new insights on their evolution and the interplay with their host galaxy. We combine all the archival XMM observations of the LMC with those of our Very Large Programme survey. We produce X-ray images and spectra of 51 SNRs, out of a list of 59. Using a careful modeling of the background, we consistently analyse all the X-ray spectra and measure temperatures, luminosities, and chemical compositions. We investigate the spatial distribution of SNRs in the LMC and the connection with their environment, characterised by various SFHs. We tentatively type all LMC SNRs to constrain the ratio of core-collapse to type Ia SN rates in the LMC. We compare the X-ray-derived column densities to HI maps to probing the 3D structure of the LMC. This work provides the first homogeneous catalogue of X-ray spectral properties of LMC SNRs. It offers a complete census of LMC SNRs exhibiting Fe K lines (13% of the sample), or revealing contribution from hot SN ejecta (39%). Abundances in the LMC ISM are found to be 0.2-0.5 solar, with a lower [$\alpha$/Fe] than in the Milky Way. The ratio of CC/type Ia SN in the LMC is $N_{\mathrm{CC}}/N_{\mathrm{Ia}} = 1.35(_{-0.24}^{+0.11})$, lower than in local SN surveys and galaxy clusters. Comparison of X-ray luminosity functions of SNRs in Local Group galaxies reveals an intriguing excess of bright objects in the LMC. We confirm that 30 Doradus and the LMC Bar are offset from the main disc of the LMC, to the far and near sides, respectively. (abridged)
    No preview · Article · Sep 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey (ChanPlaNS) observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively "hard" ($\geq0.5$~keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically-thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, $L_{\rm X}$, that appear uncorrelated with the CSPN bolometric luminosity, $L_{\rm bol}$; and (2) lower-temperature plasmas with $L_{\rm X}/L_{\rm bol}\sim10^{-7}$. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.
    Full-text · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: They harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind, and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time a NLTE code for expanding atmospheres which takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with temperature $kT$=0.088 keV ($T\approx$1.0$\times$10${^6}$ K). We estimate X-ray luminosities in the 0.2--2.0 keV energy band of $L_{\mathrm{X,CSPN}}$=(1.2$\pm$0.3)$\times$10$^{31}$ erg~s$^{-1}$ and $L_{\mathrm{X,DIFF}}$=(9.2$\pm$2.3)$\times$10$^{30}$ erg~s$^{-1}$ for the CSPN and diffuse components, respectively.
    Full-text · Article · Nov 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of XMM-Newton Reflection Grating Spectrometer (RGS) observations of the planetary nebula (PN) NGC 6543, rendering it the second PN with high resolution X-ray spectroscopic observations besides BD+30 3639. The observations consist of 26 pointings, of which 14 included RGS observations for a total integration time of 435 ks. Many of these observations, however, were severely affected by high-background levels, and the net useful exposure time is drastically reduced to 25 ks. Only the O VII triplet at 22 \AA\ is unambiguously detected in the RGS spectrum of NGC 6543. We find this spectrum consistent with an optically thin plasma at 0.147 keV (1.7 MK) and nebular abundances. Unlike the case of BD+30 3639, the X-ray emission from NGC 6543 does not reveal overabundances of C and Ne. The results suggest the N/O ratio of the hot plasma is consistent with that of the stellar wind, i.e., lower than the nebular N/O ratio, but this result is not conclusive.
    Preview · Article · Oct 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent XMM–Newton observation has revealed diffuse X-ray emission inside the nebula NGC 2359 around the Wolf–Rayet star WR 7. Taking advantage of an improved point-source rejection and background subtraction, and a detailed comparison of optical and X-ray morphology, we have reanalysed these X-ray observations. Our analysis reveals diffuse X-ray emission from a blowout and the presence of emission at energies from 1.0 to 2.0 keV. The X-ray emission from NGC 2359 can be described by an optically thin plasma emission model, but contrary to previous analysis, we find that the chemical abundances of this plasma are similar to those of the optical nebula, with no magnesium enhancement, and that two components at temperatures T1 = 2 × 106 K and T2 = 5.7 × 107 K are required. The estimated X-ray luminosity in the 0.3–2.0 keV energy range is LX = 2 × 1033 erg s−1. The averaged rms electron density of the X-ray-emitting gas (ne ≲ 0.6 cm−3) reinforces the idea of mixing of material from the outer nebula into the hot bubble.
    Preview · Article · Oct 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (<~5x10^3 yr), and likewise compact (R_neb<~0.15 pc), PNe with closed structures and high central electron densities (n_e>~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.
    Full-text · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the first detections of OH+ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$\mu$m to look for new detections. OH+ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$\mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2 x $10$^{10}$ to 4 x $10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (Teff > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.
    Full-text · Article · Jun 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by approx 2 arcsec (or approx 0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analyzed the spectrum of the binary system using the non-LTE Potsdam Wolf-Rayet (PoWR) code, confirming that the WR component is a very hot (approx 90 kK) WN star. For this star, we derived a luminosity of log L/Lsun =5.45 and a mass-loss rate of 10^{-5.8} Msun/yr, and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He iii region centred on BAT99 3a and having the same angular radius (approx 15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster.
    Full-text · Article · May 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNs) under the Herschel Space Observatory Open Time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. We perform (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNs and (2) PACS/SPIRE spectral-energy-distribution (SED) and line spectroscopy to determine the spatial distribution of the gas component in the target PNs. For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multi-position spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially-resolved far-IR line diagnostics yield the (T_e, n_e) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195+-110. The present analysis yields estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 4 x 10^-3 M_sun of dust grains. These estimates also suggest that the central star of about 1.5 M_sun initial mass is terminating its PN evolution onto the white dwarf cooling track. The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially-resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNs.
    Full-text · Article · Apr 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed radio, X-ray and optical study of a newly discovered Large Magellanic Cloud (LMC) supernova remnant (SNR) which we denote MCSNR J0508-6902. Observations from the Australian Telescope Compact Array (ATCA) and the $\textit{XMM-Newton}$ X-ray observatory are complemented by deep H$\alpha$ images and Anglo Australian Telescope AAOmega spectroscopic data to study the SNR shell and its shock-ionisation. Archival data at other wavelengths are also examined. The remnant follows a filled-in shell type morphology in the radio-continuum and has a size of $\sim$74 pc $\times$ 57 pc at the LMC distance. The X-ray emission exhibits a faint soft shell morphology with Fe-rich gas in its interior $-$ indicative of a Type Ia origin. The remnant appears to be mostly dissipated at higher radio-continuum frequencies leaving only the south-eastern limb fully detectable while in the optical it is the western side of the SNR shell that is clearly detected. The best-fit temperature to the shell X-ray emission ($kT = 0.41^{+0.05}_{-0.06}$ keV) is consistent with other large LMC SNRs. We determined an O/Fe ratio of $<21$ and an Fe mass of 0.5-1.8$~M_{\odot}$ in the interior of the remnant, both of which are consistent with the Type Ia scenario. We find an equipartition magnetic field for the remnant of $\sim$28 $\mu$G, a value typical of older SNRs and consistent with other analyses which also infer an older remnant.
    Full-text · Article · Jan 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ~1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T 1 ~ 1.4 × 106 K, T 2 ~ 7.4 × 106 K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L X = (7.7 ± 0.1) ×1033 erg s–1 for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is 0.4 cm–3 for a total mass 1.2 M ☉.
    Full-text · Article · Oct 2013 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: We present a detailed multi-wavelength study of four new supernova remnants (SNRs) in the Large Magellanic Cloud (LMC). The objects were identified as SNR candidates in X-ray observations performed during the survey of the LMC with XMM-Newton. Methods: Data obained with XMM-Newton are used to investigate the morphological and spectral features of the remnants in X-rays. We measure the plasma conditions, look for supernova (SN) ejecta emission, and constrain some of the SNR properties (e.g. age and ambient density). We supplement the X-ray data with optical, infrared, and radio-continuum archival observations, which allow us to understand the conditions resulting in the current appearance of the remnants. Based on the spatially-resolved star formation history (SFH) of the LMC together with the X-ray spectra, we attempt to type the supernovae that created the remnants. Results: We confirm all four objects as SNRs, to which we assign the names MCSNR J0508-6830, MCSNR J0511-6759, MCSNR J0514-6840, and MCSNR J0517-6759. In the first two remnants, an X-ray bright plasma is surrounded by very faint [S II] emission. The emission from the central plasma is dominated by Fe L-shell lines, and the derived iron abundance is greatly in excess of solar. This establishes their type Ia (i.e. thermonuclear) SN origin. They appear to be more evolved versions of other Magellanic Cloud iron-rich SNRs which are centrally-peaked in X-rays. From the two other remnants (MCSNR J0514-6840 and MCSNR J0517-6759), we do not see ejecta emission. At all wavelengths at which they are detected, the local environment plays a key role in their observational appearance. We present evidence that MCSNR J0517-6759 is close to and interacting with a molecular cloud, suggesting a massive progenitor.
    Full-text · Article · Oct 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stars over a wide range of masses and evolutionary stages are nowadays known to emit X-rays. This X-ray emission is a unique probe of the most energetic phenomena occurring in the circumstellar environment of these stars, and provides precious insight on magnetic phenomena or hydrodynamic shocks. Owing to its large collecting area, Athena+ will open up an entirely new window on these phenomena. Indeed, Athena+ will not only allow us to study many more objects with an unprecedented spectral resolution, but will also pioneer the study of the dynamics of these objects via time-resolved high-resolution spectroscopy. In this way, Athena+ will be a unique tool to study accretion processes in TTauri stars, flaring activity in young stars, dynamos in ultra-cool dwarfs, small and large-scale structures in the winds of single massive stars, wind interactions in massive binary systems, hot bubbles in planetary nebula... All these studies will lead to a deeper understanding of yet poorly understood processes which have profound impact in star and planetary system formation as well as in feedback processes on Galactic scale.
    Full-text · Article · Jun 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the hot plasma detected with XMM-Newton and Chandra X-ray observations toward the only two Wolf-Rayet bubbles so far detected: S 308 and NGC 6888. Both nebulae present spectra dominated by soft temperature plasmas of ˜10^{6} K with luminosities of L_{{X}}˜10^{33}-10^{34} erg s^{-1}, but with different X-ray-emitting plasma distribution. In the case of S 308 it presents a limb-brightened morphology, while in the case of NGC 6888, it shows three maxima localized at the Northeast and Southwest caps and another one extending toward the Northwest.
    No preview · Article · May 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of O VI ions can be indicative of plasma temperatures of a few times 10^5 K that is expected in heat conduction layers between the hot shocked stellar wind gas at several 10^6 K and the cooler (~10,000 K) nebular gas of planetary nebulae (PNe). We have used FUSE observations of PNe to search for nebular O VI emission or absorption as a diagnostic of conduction layer to ensure the presence of hot interior gas. Three PNe showing nebular O VI, namely IC 418, NGC 2392, and NGC 6826, have been selected for Chandra observations and diffuse X-ray emission is indeed detected in each of these PNe. Among the three, NGC 2392 has peculiarly high diffuse X-ray luminosity and plasma temperature compared with those expected from its stellar wind's mechanical luminosity and terminal velocity. The limited effects of heat conduction on the plasma temperature of a hot bubble at the low terminal velocity of the stellar wind of NGC 2392 may partially account for its high plasma temperature, but the high X-ray luminosity needs to be powered by processes other than the observed stellar wind, probably caused by the presence of an unseen binary companion of the CSPN of NGC 2392. We have compiled relevant information on the X-ray, stellar, and nebular properties of PNe with a bubble morphology and found that the expectations of bubble models including heat conduction compare favorably with the present X-ray observations of hot bubbles around H-rich CSPNe, but have notable discrepancies for those around H-poor [WR] CSPNe. We note that PNe with more massive central stars can produce hotter plasma and higher X-ray surface brightness inside central hot bubbles.
    Preview · Article · Feb 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud (LMC) shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period near 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ~ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.
    Preview · Article · Feb 2013 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.
    Full-text · Article · Jan 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.
    Preview · Article · Oct 2012 · Proceedings of the International Astronomical Union

Publication Stats

1k Citations
390.93 Total Impact Points

Institutions

  • 2014-2015
    • Academia Sinica
      • Institute of Astronomy and Astrophysics
      T’ai-pei, Taipei, Taiwan
  • 1994-2014
    • University of Illinois, Urbana-Champaign
      • Department of Astronomy
      Urbana, Illinois, United States
  • 2012
    • Rochester Institute of Technology
      Rochester, New York, United States
  • 2007
    • National Central University
      • Graduate Institute of Astronomy
      Taoyuan City, Taiwan, Taiwan
  • 2004
    • Bureau of Materials & Physical Research
      Springfield, Illinois, United States
  • 1999
    • Ruhr-Universität Bochum
      Bochum, North Rhine-Westphalia, Germany
  • 1996
    • University of Wuerzburg
      Würzburg, Bavaria, Germany
  • 1993
    • Drake University
      United States
  • 1992
    • University of Chicago
      Chicago, Illinois, United States
  • 1979-1982
    • University of California, Berkeley
      Berkeley, California, United States