Xing Li

Hunan University, Ch’ang-sha-shih, Hunan, China

Are you Xing Li?

Claim your profile

Publications (1)6.41 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.
    No preview · Article · Feb 2011 · Biosensors & Bioelectronics