Toshifumi Aoyama

Shinshu University, Shonai, Nagano, Japan

Are you Toshifumi Aoyama?

Claim your profile

Publications (174)685.15 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: It was reported that 2,4-dichlorophenoxyacetic acid (2,4-D), a commonly used herbicide and a possible endocrine disruptor, can disturb spermatogenesis, but the precise mechanism is not understood. Since 2,4-D is a weak peroxisome proliferator in hepatocytes and peroxisome proliferator-activated receptor α (PPARα) is also expressed in Leydig cells, this study aimed to investigate the link between PPARα and 2,4-D-mediated testicular dysfunction. 2,4-D (130 mg/kg/day) was administered to wild-type and Ppara-null mice for 2 weeks, and the alterations in testis and testosterone/cholesterol metabolism in Leydig cells were examined. Treatment with 2,4-D markedly decreased testicular testosterone in wild-type mice, leading to degeneration of spermatocytes and Sertoli cells. The 2,4-D decreased cholesterol levels in Leydig cells of wild-type mice through down-regulating the expression of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 and reductase, involved in de novo cholesterogenesis. However, the mRNAs encoding the important proteins involved in testosterone synthesis were unchanged by 2,4-D except for CYP17A1, indicating that exhausted cholesterol levels in the cells is a main reason for reduced testicular testosterone. Additionally, pregnancy rate and the number of pups between 2,4-D-treated wild-type male mice and untreated female mice were significantly lower compared with those between untreated couples. These phenomena were not observed in 2,4-D-treated Ppara-null males. Collectively, these results suggest a critical role for PPARα in 2,4-D-induced testicular toxicity due to disruption of cholesterol/testosterone homeostasis in Leydig cells. This study yields novel insights into the possible mechanism of testicular dysfunction and male infertility caused by 2,4-D.
    No preview · Article · Feb 2016 · Archive für Toxikologie
  • Source

    Full-text · Dataset · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension, hyperlipidemia, and diabetes are important precursors of cardiovascular disease. Here, we evaluated the antihypertensive, antihyperlipidemic, and antidiabetic potential of five types of sprouts in fructose-loaded spontaneously hypertensive rats (SHRs). Powdered sprouts (PSs) were produced from mung bean, broccoli, radish, and buckwheat sprouts and germinated soybeans by lyophilization. The PSs were analyzed for nutritional composition and bioactive agents (γ-aminobutyric acid [GABA], coenzyme Q10 [CoQ10], rutin, and myo-inositol-1,2,3,4,5,6-hexakisphosphate [IP6]) and functionally tested in SHRs given water containing 25 % fructose and diets containing 30 % PS for 46 days. All PSs were nutritionally rich in protein and dietary fiber. CoQ10, GABA/rutin, and GABA/IP6 were abundant in broccoli, buckwheat, and germinated soybean PSs, respectively. Mung bean, broccoli, and buckwheat PSs caused significant reductions in heart rates and/or serum triglycerides. Mung bean PS also significantly reduced serum total cholesterol. These data supported the antihypertensive and antihyperlipidemic potential of mung bean, broccoli, and buckwheat sprouts.
    Full-text · Article · Oct 2015 · Journal of Food Science and Technology -Mysore-
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfatides are major glycosphingolipids of lipoproteins that influence atherosclerosis and blood coagulation. Our previous cross-sectional study of hemodialysis patients showed that serum sulfatide levels decreased markedly with increasing duration of hemodialysis treatment, which may contribute to the development of cardiovascular disease. However, this past study could not demonstrate the time-dependent change in serum sulfatide levels in each patient, and the underlying mechanism is unknown. To confirm the time-dependent aggravation of serum sulfatide abnormality, 95 stable hemodialysis outpatients were followed up for 3 years. To show the underlying mechanisms, we statistically analyzed correlations between serum sulfatide levels and clinical factors, including an oxidative stress marker, malondialdehyde. Serum sulfatides were quantified by mass spectrometry after conversion to lysosulfatides. Malondialdehyde was measured using a colorimetric assay. The results showed a time-dependent decrease in serum sulfatide levels associated with increased malondialdehyde levels, although the absolute level of serum malondialdehyde does not determine the baseline level of serum sulfatides. Multiple linear regression analysis showed a significant correlation only between the time-dependent change in serum sulfatide levels and the time-dependent change in serum malondialdehyde levels. This study demonstrated, for the first time, a time-dependent aggravation of serum sulfatide abnormality in hemodialysis patients, as well as the potential relationship between serum sulfatide abnormality and increasing oxidative stress. These findings suggest that oxidative stress might be an aggravating factor in serum sulfatide abnormality. As continuation of hemodialysis treatment hardly improves abnormal serum sulfatide levels or increased oxidative stress, development of novel therapeutic strategies may be important.
    No preview · Article · Mar 2015 · Hemodialysis International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and aim: It is recognized that nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), may develop after pancreaticoduodenectomy (PD). However, the mechanism of NASH development remains unclear. This study aimed to examine the changes in gene expression associated with NASH occurrence following PD. Methods: The expression of genes related to fatty acid/triglyceride (FA/TG) metabolism and inflammatory signaling was examined using liver samples obtained from 7 post-PD NASH patients and compared with 6 healthy individuals and 32 conventional NASH patients. Results: The livers of post-PD NASH patients demonstrated significant up-regulation of the genes encoding CD36, FA-binding proteins 1 and 4, acetyl-coenzyme A carboxylase α, diacylglycerol acyltransferase 2, and peroxisome proliferator-activated receptor (PPAR) γ compared with normal and conventional NASH livers. Although serum apolipoprotein B (ApoB) and TG were decreased in post-PD NASH patients, the mRNAs of ApoB and microsomal TG transfer protein were robustly increased, indicating impaired TG export from the liver as very-low-density lipoprotein (VLDL). Additionally, elevated mRNA levels of myeloid differentiation primary response 88 and superoxide dismutases in post-PD NASH livers suggested significant activation of innate immune response and augmentation of oxidative stress generation. Conclusions: Enhanced FA uptake into hepatocytes and lipogenesis, up-regulation of PPARγ, and disruption of VLDL excretion into the circulation are possible mechanisms of steatogenesis after PD. General significance: These results provide a basis for understanding the pathogenesis of NAFLD/NASH following PD.
    Full-text · Article · Feb 2015 · Biochimica et Biophysica Acta - Clinical
  • [Show abstract] [Hide abstract]
    ABSTRACT: SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial β-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα. (248 words). Copyright © 2014. Published by Elsevier B.V.
    No preview · Article · Dec 2014 · Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a new one-pot reaction of phenolic acids to afford the corresponding esters and amides through acyl-protected and activated phenolic acid intermediates. The simultaneous protection/activation of phenolic acids with alkylchloroformates proceeded readily in the presence of DMAP at room temperature; subsequent addition of alcohols or amines afforded the corresponding esters or amides. The use of iso-butyloxycarbonyl as the protecting and activating group in the one-pot reactions afforded phenolic esters or amides in 91% average yield. As a practical example of this convenient synthesis, caffeic acid phenethyl ester (CAPE) was readily synthesized from commercially available caffeic acid and phenethyl alcohol in 95% yield, and an isotopomer of CAPE, [3,10-C-13(2)]CAPE, was synthesized in 91% yield from [3-C-13]caffeic acid and 2-[1-C-13]phenethyl alcohol. This method may be useful for the convenient esterification and amidation of diverse phenolic acids.
    Full-text · Article · Oct 2014 · Tetrahedron
  • Source

    Full-text · Dataset · Sep 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological studies demonstrate a possible relationship between chronic ethanol drinking and thrombotic diseases, such as myocardial infarction and stroke. However, the precise mechanism for this association remains unclear. Sulfatides are endogenous glycosphingolipids composed of ceramide, galactose, and sulfate, known to have anti-thrombotic properties. Low (0.5 g/kg/day), middle (1.5 g/kg/day), and high (3.0 g/kg/day) doses of ethanol were administered for 21 days intraperitoneally to female wild-type mice, and serum/liver sulfatide levels were measured. No significant changes in cholesterol and triglycerides were seen in serum and liver by ethanol treatment. However, serum/liver sulfatide levels were significantly decreased by middle- and high-dose ethanol treatment, likely due to downregulation of hepatic cerebroside sulfotransferase (CST) levels. Marked decreases in the expression of catalase and superoxide dismutases and ensuing increases in lipid peroxides were also observed in the livers of mice with middle- and high-dose ethanol treatment, suggesting the association between the suppression of hepatic CST expression and enhancement of oxidative stress. Furthermore, serum levels of tissue factor, a typical pro-coagulant molecule, were significantly increased in the mice with middle- and high-dose ethanol treatment showing decreases in serum sulfatide levels. Collectively, these results demonstrate that chronic ethanol consumption reduces serum sulfatide levels by increasing oxidative stress and decreasing the expression of CST in the liver. These findings could provide a mechanism by which chronic ethanol drinking increases thrombotic events.
    No preview · Article · Sep 2013 · Archives of Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Buckwheat (Fagopyrum esculentum) is rich in anti-hypertensive compounds. This study investigated the effect of lactic fermented buckwheat sprouts (neo-FBS) on level, identification, and potency of blood pressure-lowering (BPL) compounds. Single oral dose of 1.0 mg/kg body weight buckwheat sprouts (BS) in spontaneously hypertensive rats did not show significant BPL activity, whereas neo-FBS significantly decreased blood pressure. HPLC of neo-FBS identified two peaks absent in the profile of BS. The peak exhibiting potent BPL activity was fractionated, and six peptides (DVWY, FDART, FQ, VAE, VVG, and WTFR) and tyrosine were identified by LC-MS/MS and Edman degradation. Single oral dose administration of the peptides revealed significant BPL effect of all the peptides, with the most potent being DVWY, FQ, and VVG. DVWY, VAE, and WTFR are novel. This study demonstrates that lactic fermentation of BS produces new, highly potent anti-hypertensive peptides, and increases active compounds, GABA and tyrosine already present in BS.
    Full-text · Article · Feb 2013 · Journal of Agricultural and Food Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Effective and safe sedation for patients with liver cirrhosis is problematic. Aim To examine the safety and effectiveness of low-dose propofol sedation during and after esophagogastroduodenoscopy (EGD) in cirrhotic patients. Methods Study 1 was a prospective study in cirrhotic patients who underwent diagnostic EGD under propofol sedation. Propofol was given by bolus injection with an age-adjusted standard protocol consisting of 40 mg for patients <70 years, 30 mg for patients aged 70–89 years; additional injections of 20 mg propofol were given up to a maximum of 120 mg. The principal parameter was the occurrence of adverse events within 24 h after EGD. Secondary parameters included successful procedures, complications, and full recovery within 60 min. In Study 2, the residual effects of propofol were evaluated using a driving simulator and blood propofol concentrations in a subset of cirrhotic patients undergoing EGD and compared with healthy individuals. The principal parameter was driving ability. Results Study 1: Consecutive cirrhotic patients were entered and all 163 successfully completed EGD. The mean dose of propofol was 46 mg (range 30–120 mg). No complications occurred. Full recovery had occurred in 100 % 60 min after the procedure. No adverse events occurred within 24 h after EGD. Study 2: There were no significant differences in blood propofol levels between cirrhotic patients (n = 21) and healthy individuals (n = 20) after sedation. In cirrhotic patients, there was no deterioration in driving ability as compared with healthy individuals. Conclusion Low-dose propofol sedation provided safe and effective sedation for EGD in cirrhotic patients with rapid recovery.
    Full-text · Article · Nov 2012 · Digestive Diseases and Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sulfatides, 3-O-sulfogalactosylceramides, are known to have multifunctional properties. These molecules are distributed in various tissues of mammals, where they are synthesized from galactosylceramides by sulfation at C3 of the galactosyl residue. Although this reaction is specifically catalyzed by cerebroside sulfotransferase (CST), the mechanisms underlying the transcriptional regulation of this enzyme are not understood. With respect to this issue, we previously found potential sequences of peroxisome proliferator-activated receptor (PPAR) response element on upstream regions of the mouse CST gene and presumed the possible regulation by the nuclear receptor PPARα. To confirm this hypothesis, we treated wild-type and Ppara-null mice with the specific PPARα agonist fenofibrate and examined the amounts of sulfatides and CST gene expression in various tissues. Fenofibrate treatment increased sulfatides and CST mRNA levels in the kidney, heart, liver, and small intestine in a PPARα-dependent manner. However, these effects of fenofibrate were absent in the brain or colon. Fenofibrate treatment did not affect the mRNA level of arylsulfatase A, which is the key enzyme for catalyzing desulfation of sulfatides, in any of these six tissues. Analyses of the DNA-binding activity and conventional gene expression targets of PPARα has demonstrated that fenofibrate treatment activated PPARα in the kidney, heart, liver, and small intestine but did not affect the brain or colon. These findings suggest that PPARα activation induces CST gene expression and enhances sulfatide synthesis in mice, which suggests that PPARα is a possible transcriptional regulator for the mouse CST gene.
    No preview · Article · Oct 2012 · Glycoconjugate Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The vast increase of chronic kidney disease (CKD) has attracted considerable attention worldwide, and the development of a novel therapeutic option against a representative kidney disease that leads to CKD, mesangial proliferative glomerulonephritis (MsPGN) would be significant. Peroxisome proliferator-activated receptor α (PPARα), a member of the steroid/nuclear receptor superfamily, is known to perform various physiological functions. Recently, we reported that PPARα in activated mesangial cells exerted anti-inflammatory effects and that the deficiency of PPARα resulted in high susceptibility to glomerulonephritis. To investigate whether PPARα activation improves the disease activity of MsPGN, we examined the protective effects of a PPARα agonist, clofibrate, in a well-established model of human MsPGN, anti-Thy1 nephritis, for the first time. This study demonstrated that pretreatment with clofibrate (via a 0.02% or 0.1% clofibrate-containing diet) continuously activated the glomerular PPARα, which outweighed the PPARα deterioration associated with the nephritic process. The PPARα activation appeared to suppress the NF-κB signaling pathway in glomeruli by the induction of IκBα, resulting in the reduction of proteinuria and the amelioration of the active inflammatory pathologic glomerular changes. These findings suggest the antinephritic potential of PPARα-related medicines against MsPGN. PPARα-related medicines might be useful as a treatment option for CKD.
    Full-text · Article · May 2012 · PPAR Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To examine fatty acid accumulation and its toxic effects in cells, we analyzed skin fibroblasts from six patients with mitochondrial trifunctional protein deficiency, who had abnormalities in the second through fourth reactions in fatty acid β-oxidation system. We found free fatty acid accumulation, enhanced three acyl-CoA dehydrogenases, catalyzing the first reaction in the β-oxidation system and being assumed to have normal activities in these patients, and PPARα activation that was confirmed in the experiments using MK886, a PPARα specific antagonist and fenofibrate, a PPARα specific agonist. These novel findings suggest that the fatty acid accumulation and the resulting PPARα activation are major causes of the increase in the β-oxidation ability as probable compensation for fatty acid metabolism in the patients' fibroblasts, and that enhanced cell proliferation and increased oxidative stress due to the PPARα activation relate to the development of specific clinical features such as hypertrophic cardiomyopathy, slight hepatomegaly, and skeletal myopathy. Additionally, significant suppression of the PPARα activation by means of MK886 treatment is assumed to provide a new method of treating this deficiency.
    Full-text · Article · May 2012 · PPAR Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sulfatides are one of the major sphingoglycolipids in mammalian serum and are synthesized and secreted mainly from the liver as a component of lipoproteins. Recent studies revealed a protective role for serum sulfatides against arteriosclerosis and hypercoagulation. Although peroxisome proliferator-activated receptor (PPAR) α has important functions in hepatic lipoprotein metabolism, its association with sulfatides has not been investigated. In this study, sulfatide levels and the expression of enzymes related to sulfatide metabolism were examined using wild-type (+/+), Ppara-heterozygous (+/-), and Ppara-null (-/-) mice given a control diet or one containing 0.1% fenofibrate, a clinically used hypolipidemic drug and PPARα activator. Fenofibrate treatment increased serum and hepatic sulfatides in Ppara (+/+) and (+/-) mice through a marked induction of hepatic cerebroside sulfotransferase (CST), a key enzyme in sulfatide synthesis, in a PPARα-dependent manner. Furthermore, increases in CST mRNA levels were correlated with mRNA elevations of several known PPARα target genes, and such changes were not observed for other sulfatide-metabolism enzymes in the liver. These results suggest that PPARα activation enhances hepatic sulfatide synthesis via CST induction and implicate CST as a novel PPARα target gene.
    Full-text · Article · May 2012 · PPAR Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Oxidative stress (OS) is a strong risk factor for cardiovascular disease (CVD). The incidence of CVD is lower among kidney transplantation (KT) recipients than hemodialysis patients, and the reduction in OS may be one reason for this difference. Recently, serum sulfatides were recognized as a candidate inhibitory factor of CVD affected by OS. However, the long-term changes in OS and serum sulfatide levels in KT recipients are unknown. METHODS: We investigated the long-term changes in a serum OS marker, malondialdehyde (MDA), and the serum sulfatide levels in 17 KT recipients. Multiple regression analysis was used to analyze the factors correlated with serum sulfatide levels. RESULTS: The high serum levels of MDA in the KT recipients decreased dramatically but were still high 1 year after KT surgery. MDA levels decreased further and reached near-normal levels more than 3 years after the surgery. Similarly, over the same 3 years, the low serum sulfatide levels increased to near-normal levels, reaching saturation. Multiple regression analysis showed that the most significant factors influencing serum sulfatide levels were MDA and total cholesterol content. CONCLUSIONS: The current results show that over the long term, the internal improvement brought about by successful KT can normalize OS. Oxidative normalization was significantly correlated with the restoration of serum sulfatide levels, which were also influenced by lipoprotein metabolism. The amelioration of serum sulfatide levels might contribute to the low incidence of CVD in KT recipients.
    No preview · Article · May 2012 · Clinical and Experimental Nephrology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serum sulfatides are the major glycosphingolipids in lipoproteins. Although serum sulfatides are mainly synthesized and secreted by the liver, they are significantly decreased when the kidneys are impaired. Our recent experimental study using a murine protein-overload nephropathy model suggested a hypothetical mechanism whereby serum sulfatides were reduced due to kidney dysfunction. This was the result of decreased hepatic expression of a sulfatide synthetic enzyme, cerebroside sulfotransferase (CST), which is associated with systemic enhancement of oxidative stress. However, there is a possibility that the experimental process, protein-overload itself, directly affected the sulfatide metabolism and oxidative stress in the liver. To determine whether kidney dysfunction actually reduces the hepatic synthesis of sulfatides via oxidative stress, we examined sulfatide levels, the hepatic content of metabolic sulfatide enzymes, and the degree of oxidative stress in protein-overload mice subjected to renoprotective therapy using clofibrate, a representative hypolipidemic medicine. Protein-overload mice exhibited marked kidney injuries, enhancement of hepatic oxidative stress, decreased levels of serum and hepatic sulfatides, and decreased expression of hepatic CST. The clofibrate treatment attenuated kidney damage and hepatic oxidative stress while maintaining serum/hepatic sulfatide levels and hepatic CST content in the mice. Because clofibrate monotherapy without protein-overload treatment only minimally affected these hepatic parameters, the hepatic synthesis of sulfatides appeared to be strongly influenced by kidney dysfunction and subsequent oxidative stress. This study suggests that the crosstalk between kidney dysfunction and hepatic sulfatide metabolism is mediated by oxidative stress. These results should help to understand the phenomenon in patients with end-stage kidney disease.
    No preview · Article · May 2012 · The Tohoku Journal of Experimental Medicine
  • Kimura T · Nakajima T · Tanaka N · Komatsu M · Kamijo Y · Tanaka E · Aoyama T

    No preview · Article · May 2012 · Gastroenterology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dihydropyridine Ca(2+) channel antagonists (DHPs) block Ca(V)1.2 L-type Ca(2+) channels (LTCCs) by stabilizing their voltage-dependent inactivation (VDI); however, it is still not clear how DHPs allosterically interact with the kinetically distinct (fast and slow) VDI. Thus, we analyzed the effect of a prototypical DHP, nifedipine on LTCCs with or without the Timothy syndrome mutation that resides in the I-II linker (L(I)-(II)) of Ca(V)1.2 subunits and impairs VDI. Whole-cell Ba(2+) currents mediated by rabbit Ca(V)1.2 with or without the Timothy mutation (G436R) (analogous to the human G406R mutation) were analyzed in the presence and absence of nifedipine. In the absence of nifedipine, the mutation significantly impaired fast closed- and open-state VDI (CSI and OSI) at -40 and 0 mV, respectively, but did not affect channels' kinetics at -100 mV. Nifedipine equipotently blocked these channels at -80 mV. In wild-type LTCCs, nifedipine promoted fast CSI and OSI at -40 and 0 mV and promoted or stabilized slow CSI at -40 and -100 mV, respectively. In LTCCs with the mutation, nifedipine resumed the impaired fast CSI and OSI at -40 and 0 mV, respectively, and had the same effect on slow CSI as in wild-type LTCCs. Therefore, nifedipine has two mechanistically distinct effects on LTCCs: the promotion of fast CSI/OSI caused by L(I-II) at potentials positive to the sub-threshold potential and the promotion or stabilization of slow CSI caused by different mechanisms at potentials negative to the sub-threshold potential.
    Full-text · Article · Apr 2012 · European journal of pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Graft dysfunction is one of the major complications after liver transplantation, but its precise mechanism remains unclear. Since steatotic liver grafts are susceptible to post-transplant dysfunction, and peroxisome proliferator-activated receptor (PPAR) α plays an important role in the maintenance of hepatic lipid homeostasis, we examined the role of PPARα in liver transplantation. Livers were harvested from Sv/129 wild-type (Ppara(+/+)) mice and PPARα-null (Ppara(-/-)) mice and transplanted orthotopically into syngeneic Ppara(+/+) mice. Hepatocellular damage was unexpectedly milder in transplanted Ppara(-/-) livers compared with Ppara(+/+) ones. This was likely due to decreased lipid peroxides in the Ppara(-/-) livers, as revealed by the lower levels of fatty acid oxidation (FAO) enzymes, which are major sources of reactive oxygen species. Hepatic PPARα and its target genes, such as FAO enzymes and pyruvate dehydrogenase kinase 4, were strongly down-regulated after transplantation, which was associated with increases in hepatic tumor necrosis factor-α expression and nuclear factor-κB activity. Inhibiting post-transplant PPARα down-regulation by clofibrate treatment markedly augmented oxidative stress and hepatocellular injury. Down-regulation of PPARα seemed to be an adaptive response to metabolic alterations following liver transplantation. These results provide novel information to the understanding of the pathogenesis of early post-transplant events.
    No preview · Article · Mar 2012 · Journal of Hepatology

Publication Stats

7k Citations
685.15 Total Impact Points


  • 1992-2014
    • Shinshu University
      • • Department of Metabolic Regulation
      • • Division of Applied Biochemistry
      • • Department of Medicine
      Shonai, Nagano, Japan
    • University of Wisconsin–Madison
      • Department of Pharmacology
      Madison, Wisconsin, United States
  • 1989-2007
    • National Cancer Institute (USA)
      • Laboratory of Metabolism
      Maryland, United States
  • 2001
    • Gifu University Hospital
      Gihu, Gifu, Japan
  • 1999
    • National Food Research Institute
      Ibaragi, Ōsaka, Japan
  • 1989-1992
    • National Institutes of Health
      • Laboratory of Human Carcinogenesis
      베서스다, Maryland, United States
  • 1990
    • St. Jude Children's Research Hospital
      Memphis, Tennessee, United States
    • Case Western Reserve University
      • Department of Environmental Health Sciences
      Cleveland, Ohio, United States