Ryuji Suzuki

Sagamihara National Hospital, Йокосука, Kanagawa, Japan

Are you Ryuji Suzuki?

Claim your profile

Publications (152)505.19 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.
    Preview · Article · Jan 2016 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Colorectal cancer (CRC) is one of the most commonly diagnosed cancers, and novel effective treatments and diagnostic tools are urgently required. Objective: The selection of appropriate targeting tumor-associated antigens (TAAs) is critical for immunotherapy. Therefore, we analyzed TAA expression levels and investigated their relationship with clinical factors in adjacent normal mucosa (ANM) and CRC tissue. Methods: We obtained specimens of CRC primary tumors and matched ANM from 137 patients with CRC who underwent surgical resection. The mRNA levels of seven TAAs, Wilms' tumor gene (WT1), kinetochore associated-2 (KNTC2), cell division cycle associated-1 (CDCA1), M phase phosphoprotein-1 (MPHOSPH1), DEP domain-containing 1 (DEPDC1), 34-kDa translocase of the outer mitochondrial membrane (TOMM34) and ring finger protein-43 (RNF43), were analyzed using quantitative real-time reverse transcription-polymerase chain reaction, and their relationships with clinicopathological factors and the cell cycle were analyzed. Results: The expression levels of all seven TAAs were significantly higher in CRC tissues than in ANM. Expression levels of WT1 in CRC tissues did not correlate with the cell cycle. Furthermore, WT1 expression in CRC tissues was significantly related to tumor progression, lymph node metastasis, distant metastasis and clinical stage. Conclusions: WT1 is a potential marker for prognosis and tumor progression in CRC.
    Full-text · Article · Sep 2015 · Cancer biomarkers: section A of Disease markers
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Temporomandibular joint (TMJ) osteoarthritis is typically a slowly progressive asymmetric disease. Little is known regarding the natural destruction of TMJ articular tissues. The aim of the present study was to investigate morphological changes in the TMJ of STR/ort mice, known to be the model for spontaneous osteoarthritis in the knee joint, and to evaluate STR/ort mice as a suitable animal model for TMJ osteoarthritis. TMJs from 32 STR/ort mice euthanized at 30, 40, 50 or 60 weeks of age, and from 6 CBA mice euthanized at 30, 40 or 60 weeks of age were examined. Toluidine blue and tartrate-resistant acid phosphatase staining were used to assess histological changes in the articular cartilage. Morphological changes in the articular cartilage of the TMJ were evaluated using microcomputed tomography. At the age of 40-50 weeks, 17 (68%) of the 25 STR/ort mice had loss of articular cartilage on histology, with cavitation and erosion of the exposed bone and gradual changes in condylar shape. Furthermore, osteoarthritic morphological changes, and structural alterations were observed by microcomputed tomography. The STR/ort mouse strain appears to develop spontaneous osteoarthritis-like lesions in the TMJ with age, and would be a useful model to study the pathogenesis of TMJ osteoarthritis.
    Full-text · Article · May 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of the hematopoiesis of non-human primates is important to clarify the evolution of primate-specific hematopoiesis and immune regulation. However, the engraftment and development of the primate hematopoietic system are well-documented only in humans and are not clear in non-human primates. Callithrix jacchus (common marmoset; CM) is a New World monkey with a high rate of pregnancy and small size that lives in closed colonies. As stem cell factor (SCF) is an essential molecule for hematopoietic stem cell development in mice and humans, we focused on CD117, the SCF receptor, and examined whether CD117-expressing cells possess the hematopoietic stem/progenitor cell characteristics of newborn marmoset-derived hematopoietic cells that can develop into T cells and B cells. When CD117+ cell fractions of the bone marrow were transplanted into immunodeficient NOD/Shi-scid, common γc-null (NOG) mice, these cells engrafted efficiently in the bone marrow and spleens of the NOG mice. The CD117+ cells developed into myeloid lineage cells, CD20+ B cells and CD3+ T cells, which could express human cytokines in vivo. The development of B cells did not precede that of T cells. The development of CD8+ T cells was dominant in NOG mice. The engraftment was comparable for both CD117+CD34+ cells and CD117+CD34- cells. These results suggest that the CD117+ cell fraction can differentiate into all three cell lineages, and the development of marmoset immunity in the xenogeneic environment follows diverse developmental pathways compared to human immunity. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
    No preview · Article · May 2015 · International Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intraepithelial lymphocytes (IELs) are present in the intestinal epithelium. Mechanisms of IELs for the protection of villi from foreign antigens and from infections by micro-organisms have not been sufficiently explained. Although more than 70 % of mouse duodenal and jejunal IELs bear γδTCR (γδIELs), the functions of γδIELs are little investigated. We stimulate γδIELs by anti-CD3 monoclonal antibody (mAb) injection. The mAb activates γδIELs to release Granzyme B (GrB) into the spaces surrounding the γδIELs and intestinal villous epithelial cells (IECs). Released GrB induces DNA fragmentation in IECs independently of Perforin (Pfn). IECs immediately repair their fragmented DNA. Activated IELs reduce their cell size, remain for some time in the epithelium after the activation and are ultimately eliminated without leaving the site. We focus our attention on the response of IELs to the released GrB present in the gap surrounding IELs, after activation, in order to examine whether the released GrB has a similar effect on IELs to that observed on IECs in our previous studies. DNA fragmentation is also induced in IELs together with the repair of fragmented DNA thereafter. The time-kinetics of both events were found to be identical to those observed in IECs. DNA fragmentation in IELs is Pfn-independent. Here, we present Pfn-independent "autocrine DNA fragmentation" in IELs and the repair of fragmented DNA in IELs and discuss their biological significance. Autocrine DNA fragmentation has never been reported to date in vivo.
    No preview · Article · Mar 2015 · Cell and Tissue Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis (JE) is the most important form of viral encephalitis in Asia. The critical factors determining mortality and severity of JE virus (JEV) infection remain unclear. We identified brain-infiltrating T cells associated with a fatal outcome of JEV infection in mice. Dying mice were defined as those that lost more than 25 % of their body weight by day 13 and died by day 21, while surviving mice were defined as those that lost less than 10 % by day 13, based on the result of the survival time course study. Two groups of five mice that demonstrated brain virus titers of >1 × 10(6) pfu/g were randomly selected from the dying and surviving groups and used in the analyses. Cytokine patterns in brains were first examined, revealing a higher ratio of Th1-related cytokine genes in dying mice. The expression levels of CD3, CD8, CD25, and CD69 increased in JEV-infected mice relative to mock-infected mice. However, expression levels of these cell-surface markers did not differ between the two groups. T-cell receptor (TCR) usage and complementary determining region 3 (CDR3) sequences were analyzed in the brain-infiltrating T cells. T cells expressing VA8-1, VA10-1, and VB2-1 increased in both groups. However, the dominant T-cell clones as defined by CDR3 amino acid sequence differed between the two groups. The results indicate that the outcome of JEV infection, death or survival, was determined by qualitative differences in infiltrating T-cell clones with unique CDR3 amino acid sequences.
    Preview · Article · Jan 2015 · Archives of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection with a dengue virus (DENV) serotype induces cross-reactive, weakly neutralizing antibodies to different dengue serotypes. It has been postulated that cross-reactive antibodies form a virus-antibody immune complex and enhance DENV infection of FcγR-bearing cells. We determined whether infectious DENV-antibody immune complex is formed in vivo in marmosets after passive transfer of DENV-specific monoclonal antibody (mAb) and DENV inoculation and whether infectious DENV-antibody immune complex is detectable using FcγR-expressing cells. Marmosets showed that DENV-antibody immune complex was exclusively infectious to FcγR-expressing cells on days 2, 4, and 7 after passive transfer of each of the mAbs (mAb 4G2 and mAb 6B6C) and DENV inoculation. Although DENV-antibody immune complex was detected, contribution of the passively transferred antibody to overall viremia levels was limited in this study. The results indicate that DENV cross-reactive antibodies form DENV-antibody immune complex in vivo, which is infectious to FcγR-bearing cells but not FcγR-negative cells. © The American Society of Tropical Medicine and Hygiene.
    No preview · Article · Dec 2014 · The American journal of tropical medicine and hygiene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tick-borne encephalitis virus (TBEV) causes acute central nervous system disease. Here, we investigated the roles of the TNF-α, IL-10 and other cytokines in appropriate KO mice following infection with Oshima and Sofjin strains of TBEV. Following infection with the Oshima strain, mortality rates were significantly increased in TNF-α KO and IL-10 KO mice compared with wild type (WT) mice. These results suggested that TNF-α and IL-10 play protective roles against fatal infection due to Oshima strain infection. However, viral loads and proinflammatory cytokine levels in the brain of TNF-α KO andIL-10 KO mice were not significantly different compared with those of WT mice. On the other hand, all WT, TNF-α KO and IL-10 KO mice died following infection with Sofjin strain. Interestingly, Sofjin-infected mice did not exhibit an up-regulated mRNA level of IL-2 in the spleen in all groups of mice, whereas Oshima-infected mice showed significantly increased level of IL-2 compared with mock-infected mice. From these results, we suggest that TNF-α, IL-10 and IL-2 are key factors for disease remission from fatal encephalitis due to infection with Oshima strain of TBEV.
    Full-text · Article · Jun 2014 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: The natural killer group 2 membrane D (NKG2D) receptor is an NK-activating receptor that plays an important role in host defense against tumors and viral infections. Although the marmoset is an important and reliable animal model, especially for the study of human-specific viral infections, functional characterization of NKG2D on marmoset NK cells has not previously been conducted. In the present study, we investigated a subpopulation of marmoset NK cells that express NKG2D and exhibit cytolytic potential. On the basis of their CD16 and CD56 expression patterns, marmoset NK cells can be classified into three subpopulations: CD16+ CD56−, CD16− CD56+ and CD16− CD56− cells. NKG2D expression on marmoset CD16+ CD56− and CD16− CD56+ splenocytes was confirmed using an NKG2D ligand composed of an MHC class I chain-related molecule A (MICA)-Fc fusion protein. When marmoset splenocytes were cultured with IL-2 for 4 days, NKG2D expression was retained on CD16+ CD56− and CD16− CD56+. In addition, CD16+ CD56+ cells within the marmoset NK population appeared which expressed NKG2D after IL-2 stimulation. IL-2-activated marmoset NK cells showed strong cytolytic activity against K562 target cells and target cells stably expressing MICA. Further, the cytolytic activity of marmoset splenocytes was significantly reduced after addition of MICA-Fc fusion protein. Thus, NKG2D functions as an activating receptor on marmoset NK cells that possesses cytotoxic potential, and phenotypic profiles of marmoset NK cell subpopulations are similar to those seen in humans.
    No preview · Article · May 2014 · International Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective This study investigated the expression of CD44 and CD133, the two surface markers most commonly used to identify cancer stem cells (CSCs), as predictive markers for clinicopathological progression and lymph node metastasis in oral squamous cell carcinoma (OSCC). Methods OSCC primary tumor specimens obtained from 29 patients with OSCC who underwent resection as well as the normal oral mucosa samples of 14 healthy volunteers were enrolled in this study. We studied expression of CD133 and CD44 using real-time RT-PCR, immunohistochemistry and western blot analysis in primary OSCC, and investigated the correlation of clinicopathological factors. Results Although CD133 protein expression was not obviously detected, CD133 mRNA expression in primary OSCC tissues significantly correlated with lymph node metastasis, depth of invasion, extranodal invasion, and clinical stage. Conclusions CD133 mRNA over-expression in OSCC primary tumors could be a novel independent prognostic marker that correlates with tumor progression and lymph node metastasis.
    No preview · Article · Apr 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.
    No preview · Article · Mar 2014 · The Journal of Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nickel, cobalt, and chromium are well known to be causal agents of allergic contact dermatitis. Palladium (Pd) can also cause allergic disease and exposure results from wide use of this metal in dental restorations and jewelry. Metal allergy is categorized as a delayed-type hypersensitivity, and metal-responsive T cell clones have been isolated from allergic patients. However, compared to nickel, little is known about the pathology of allergic disease mediated by Pd, and pathogenic T cells are poorly understood. To identify the pathogenic T cells that are responsible for onset of Pd allergy, we enriched metal-responsive lymphocytes by sequential adoptive transfer of involved lymph node cells. Here we show that sequential adoptive transfer gradually increased the incidence and the intensity of Pd allergy, and CD8(+) T cells are responsible for the disease as CD8(+) T cell-depleted mice and β2-microglobulin-deficient mice did not develop Pd allergy. In addition, we found that draining lymph node cells skewed toward CD8(+) T cells in response to Pd challenge in 8th adoptive transferred recipient mice. The CD8(+) T cells expressed NKG2D, a costimulatory molecule involved in the production of IFN-γ. NKG2D ligand was also induced in Pd-injected tissues. Furthermore, both NKG2D ligand-transgenic mice, where NKG2D is downmodulated, and IFN-γ-deficient mice showed impaired Pd allergy. Taken together, these results indicate that IFN-γ-producing NKG2D(+) CD8(+) T cells are responsible for Pd allergy and suggest that NKG2D is a potential therapeutic target for treatment of metal allergy.
    Full-text · Article · Feb 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intraepithelial lymphocytes (IELs) have been considered to play a key role in the defense system of the small intestine. Its mechanism has not been made sufficiently clear. Studies on IELs have been extremely limited to functions of αβ T-cell receptor (αβTCR) IELs (αβ-IELs). Since, in the mouse duodenum and jejunum, γδ-IELs consist 75 % of IELs, it thus would be inappropriate to argue the mechanism without extensive discussions over the functions of γδ-IELs. In previous studies, we found that the anti-CD3 monoclonal antibody (mAb) injection induced DNA fragmentation in intestinal epithelial cells (IECs) and DNA repair immediately after, that these responses were reproduced by anti-γδTCR mAb not by anti-αβTCR mAb and that the DNA fragmentation was induced by Granzyme B secreted by IELs, totally independent of Perforin. To further explore the functions of IELs in situ, we undertook experiments exclusively focused on IELs, on their changes and ultimate fate after the stimulation in mouse in vivo system. The current study demonstrated that the injected anti-CD3 mAb bound to CD3 on IELs, that the mAb activated γδ-IELs, leading to their degranulation, that changes occurred irreversibly in IELs and finally that activated IELs died in situ. γδ-IELs could be considered to respond to various stimulations most likely without the need of accessory cells ("always ready for rapid response"), to die in situ ("disposable") and thus to respond to the stimulation only once ("a one-shot responder"). These characteristics of γδ-IELs are important to further elucidate the functions of γδ-IELs in the intestinal defense system.
    No preview · Article · Feb 2014 · Cell and Tissue Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromium (Cr) causes delayed-type hypersensitivity reactions possibly mediated by accumulating T cells into allergic inflamed skin, which are called irritants or allergic contact dermatitis. However, accumulating T cells during development of metal allergy are poorly characterized because a suitable animal model is not available. This study aimed to elucidate the skewing of T-cell receptor (TCR) repertoire and cytokine profiles in accumulated T cells in inflamed skin during elucidation of Cr allergy. A novel model of Cr allergy was induced by two sensitizations of Cr plus lipopolysaccharide solution into mouse groin followed by single Cr challenge into the footpad. TCR repertoires and nucleotide sequences of complementary determining region 3 were assessed in accumulated T cells from inflamed skin. Cytokine expression profiles and T-cell phenotypes were determined by qPCR. CD3+CD4+ T cells accumulated in allergic footpads and produced increased T helper 1 (Th1) type cytokines, Fas, and Fas ligand in the footpads after challenge, suggesting CD4+ Th1 cells locally expanded in response to Cr. Accumulated T cells included natural killer (NK) T cells and Cr-specific T cells with VA11-1/VB14-1 usage, suggesting metal-specific T cells driven by invariant NKT cells might contribute to the pathogenesis of Cr allergy.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal allergy is categorized as a delayed-type hypersensitivity reaction, and is characterized by the recruitment of lymphocytes into sites of allergic inflammation. Because of the unavailability of suitable animal models for metal allergy, the role of T cells in the pathogenesis of metal allergy has not been explored. Thus, we developed a novel mouse model for metal allergy associated with infiltration of T cells by multiple injections of palladium (Pd) plus lipopolysaccharide into the footpad. Using this model, we characterized footpad-infiltrating T cells in terms of phenotypic markers, T cell receptor (TCR) repertoires and cytokine expression. CD3+ CD4+ T cells accumulated in the allergic footpads 7 days after Pd challenge. The expression levels of CD25, interleukin-2, interferon-γ and tumor necrosis factor, but not interleukin-4 and interleukin-5, increased in the footpads after challenge, suggesting CD4+ T helper 1 (Th1) cells locally expanded in response to Pd. Infiltrated T cells in the footpads frequently expressed AV18-1 and BV8-2 T cell receptor (TCR) chains compared with T cells in the lymph nodes and exhibited oligoclonality. T-cell clones identified from Pd-allergic mouse footpads shared identical CDR3 sequences containing AV18-1 and BV8-2. These results suggest that TCR AV18-1 and BV8-2 play dominant and critical parts in the antigen specificity of Pd-specific Th1 cells.
    Full-text · Article · Oct 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV) causes acute central nervous system (CNS) disease in humans, in whom the clinical symptoms vary from febrile illness to meningitis and encephalitis. However, the mechanism of severe encephalitis has not been fully elucidated. In this study, using a mouse model, we investigated the pathogenetic mechanisms that correlate with fatal JEV infection. Following extraneural infection with the JaOArS982 strain of JEV, infected mice exhibited clinical signs ranging from mild to fatal outcome. Comparison of the pathogenetic response between severe and mild cases of JaOArS982-infected mice revealed increased levels of TNF-α in the brains of severe cases. However, unexpectedly, the mortality rate of TNF-α KO mice was significantly increased compared with that of WT mice, indicating that TNF-α plays a protective role against fatal infection. Interestingly, there were no significant differences of viral load in the CNS between WT and TNF-α KO mice. However, exaggerated inflammatory responses were observed in the CNS of TNF-α KO mice. Although these observations were also obtained in IL-10 KO mice, the mortality and enhanced inflammatory responses were more pronounced in TNF-α KO mice. Our findings therefore provide the first evidence that TNF-α has an immunoregulatory effect on pro-inflammatory cytokines in the CNS during JEV infection and consequently protects the animals from fatal disease. Thus, we propose that the increased level of TNF-α in severe cases was the result of severe disease, and secondly that immunopathological effects contribute to severe neuronal degeneration resulting in fatal disease. In future, further elucidation of the immunoregulatory mechanism of TNF-α will be an important priority to enable the development of effective treatment strategies for Japanese encephalitis.
    Full-text · Article · Aug 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nickel (Ni) can cause delayed-type hypersensitivity reactions, which are thought to be mediated by the accumulation of T cells into inflamed skin. Accumulated T cells at the developmental stages in metal allergy are poorly characterized because a suitable animal model has not been established. To investigate the accumulated T cells in allergic inflamed skin, we generated a novel murine model of Ni-induced allergy. The murine model of Ni allergy was induced by two sensitizations of Ni plus lipopolysaccharide solution into the groin followed by three challenges with Ni solution into the footpad. Here we show that a specific TCR repertoire bearing Vα14Jα18, called natural killer (NK) T cells, was expanded monoclonally in BALB/c or C57BL/6 mice. Accumulation of NKT cells was characterized as CD4(+) or CD4(-)CD8(-) T cells. These results suggested that NKT cells are major pathogenic T cells at the elicitation phase of Ni allergy.
    No preview · Article · Aug 2013 · Cellular Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP.International Journal of Oral Science (2013) 5, doi:10.1038/ijos.2013.10; published online 15 March 2013.
    Full-text · Article · Mar 2013 · International Journal of Oral Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The common marmoset () is considered a novel experimental animal model of non-human primates. However, due to antibody unavailability, immunological and pathological studies have not been adequately conducted in various disease models of common marmoset. Quantitative real-time PCR (qPCR) is a powerful tool to examine gene expression levels. Recent reports have shown that selection of internal reference housekeeping genes are required for accurate normalization of gene expression. To develop a reliable qPCR method in common marmoset, we used applets to evaluate the expression stability of eight candidate reference genes (, , , , , , and ) in various tissues from laboratory common marmosets. analysis showed that , , and were generally ranked high in stability followed by . In contrast, , and exhibited lower expression stability than other genes in most tissues analyzed. Furthermore, by using the improved qPCR with selected reference genes, we analyzed the expression levels of CD antigens (CD3ε, CD4, CD8α and CD20) and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12β, IL-13, IFN-γ and TNF-α) in peripheral blood leukocytes and compared them between common marmosets and humans. The expression levels of CD4 and IL-4 were lower in common marmosets than in humans whereas those of IL-10, IL-12β and IFN-γ were higher in the common marmoset. The ratio of Th1-related gene expression level to that of Th2-related genes was inverted in common marmosets. We confirmed the inverted ratio of CD4 to CD8 in common marmosets by flow cytometric analysis. Therefore, the difference in Th1/Th2 balance between common marmosets and humans may affect host defense and/or disease susceptibility, which should be carefully considered when using common marmoset as an experimental model for biomedical research.
    Full-text · Article · Feb 2013 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously found that an i.p. injection of anti-CD3 monoclonal antibody (mAb) into mice caused DNA fragmentation in the intestinal villous epithelial cells (IVECs) of the duodenum and the jejunum. In this study, in order to elucidate the mechanism of DNA fragmentation in IVECs, we searched for the inducer(s) of DNA fragmentation by using immunohistochemistry. The release of cytoplasmic granules from intraepithelial lymphocytes (IELs) and the formation of large gaps between IELs and IVECs were observed electron microscopically after antibody administration. The presence and distribution pattern of Granzyme B (GrB), a serine protease in cytolytic granules present in cytotoxic T lymphocytes and natural killer cells and considered to be the responsible molecule for DNA fragmentation in target cells, was examined in detail in intestinal villi by immunohistology. GrB was detected in cytoplasmic granules in nearly all IELs. The time-kinetics of granule release from IELs after mAb injection coincided not only with that of the extracellular diffusion of GrB, but also with that of DNA fragmentation in IVECs. On the other hand, perforin (Pfn), assumed to cooperate with GrB in DNA fragmentation, could not be detected in IELs, and its release was not confirmed after the anti-CD3 mAb injection. Anti-CD3 mAb injection also induced DNA fragmentation in IVECs in Pfn-knockout mice. These results support the notion that DNA fragmentation in IVECs by the stimulated IELs in the present study is induced by a mechanism involving GrB, but independent of Pfn.
    No preview · Article · Jan 2013 · Cell and Tissue Research

Publication Stats

3k Citations
505.19 Total Impact Points


  • 2004-2015
    • Sagamihara National Hospital
      Йокосука, Kanagawa, Japan
  • 2005-2014
    • National Hospital Organization Sagamihara Hospital
      Sagamihara, Kanagawa, Japan
  • 2011
    • University of Tsukuba
      • Institute of Basic Medical Sciences
      Tsukuba, Ibaraki-ken, Japan
  • 1993-2003
    • Shionogi & Co., Ltd.
      Ōsaka, Ōsaka, Japan
  • 2002
    • Osaka City University
      • Department of Orthopaedic Surgery
      Ōsaka, Ōsaka, Japan
  • 1997-2002
    • Kinki University
      Ōsaka, Ōsaka, Japan
    • Osaka Gas Co., Ltd.
      Ōsaka, Ōsaka, Japan
  • 2000
    • Akita University
      Akita, Akita, Japan
  • 1989-1995
    • Yakult Central Institute for Microbiological Research
      Musashino, Tōkyō, Japan
  • 1990
    • University of Texas MD Anderson Cancer Center
      • Department of Immunology
      Houston, Texas, United States
  • 1985-1986
    • Tohoku University
      • • Department of Pharmacology
      • • Department of Microbiology and Immunology
      Sendai, Kagoshima, Japan