Peng Wang

Stanford University, Palo Alto, California, United States

Are you Peng Wang?

Claim your profile

Publications (9)52.89 Total impact

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: This paper describes the open-source code Enzo, which uses block-structured adaptive mesh refinement to provide high spatial and temporal resolution for modeling astrophysical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions, and supports a wide variety of physics including hydrodynamics, ideal and non-ideal magnetohydrodynamics, N-body dynamics (and, more broadly, self-gravity of fluids and particles), primordial gas chemistry, optically-thin radiative cooling of primordial and metal-enriched plasmas (as well as some optically-thick cooling models), radiation transport, cosmological expansion, and models for star formation and feedback in a cosmological context. In addition to explaining the algorithms implemented, we present solutions for a wide range of test problems, demonstrate the code's parallel performance, and discuss the Enzo collaboration's code development methodology.
    Full-text · Article · Jul 2013 · The Astrophysical Journal Supplement Series
  • Source
    Peng Wang · Tom Abel · Ralf Kaehler
    [Show abstract] [Hide abstract] ABSTRACT: We describe an implementation of compressible inviscid fluid solvers with block-structured adaptive mesh refinement on Graphics Processing Units using NVIDIA’s CUDA. We show that a class of high resolution shock capturing schemes can be mapped naturally on this architecture. Using the method of lines approach with the second order total variation diminishing Runge–Kutta time integration scheme, piecewise linear reconstruction, and a Harten–Lax–van Leer Riemann solver, we achieve an overall speedup of approximately 10 times faster execution on one graphics card as compared to a single core on the host computer. We attain this speedup in uniform grid runs as well as in problems with deep AMR hierarchies. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case. Finally, we also combined our CUDA parallel scheme with MPI to make the code run on GPU clusters. Close to ideal speedup is observed on up to four GPUs.
    Preview · Article · Oct 2010 · New Astronomy
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Magnetic fields are generally expected to increase the characteristic mass of stars formed in stellar clusters, because they tend to increase the effective Jeans mass. We test this expectation using adaptive mesh refinement (AMR) magnetohydrodynamic simulations of cluster formation in turbulent magnetized clumps of molecular clouds, treating stars as accreting sink particles. We find that, contrary to the common expectation, a magnetic field of strength in the observed range decreases, rather than increases, the characteristic stellar mass. It (1) reduces the number of intermediate-mass stars that are formed through direct turbulent compression, because sub-regions of the clump with masses comparable to those of stars are typically magnetically subcritical and cannot be compressed directly into collapse, and (2) increases the number of low-mass stars that are produced from the fragmentation of dense filaments. The filaments result from mass accumulation along the field lines. In order to become magnetically supercritical and fragment, the filament must accumulate a large enough column density (proportional to the field strength), which yields a high volume density (and thus a small thermal Jeans mass) that is conducive to forming low-mass stars. We find, in addition, that the characteristic stellar mass is reduced further by outflow feedback. The conclusion is that both magnetic fields and outflow feedback are important in shaping the stellar initial mass function (IMF). Comment: Accepted to ApJL
    Full-text · Article · Aug 2010 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: (Abridged) We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using Enzo-based MHD simulations with accreting sink particles and effective resolution $2048^3$. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of $\sim 1,600$ solar masses, along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized "core" that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the formation of low-mass stars in a dense clump can affect the formation of massive stars in the same clump, through their outflow feedback on the clump dynamics. Comment: 36 pages, 9 figures, submitted to ApJ, contact the authors for movies of the simulations
    Full-text · Article · Aug 2009 · The Astrophysical Journal
  • Source
    Weiqun Zhang · Andrew MacFadyen · Peng Wang
    [Show abstract] [Hide abstract] ABSTRACT: Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRBs) and active galactic nuclei are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamic simulations demonstrating amplification and saturation of a magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from nonlinear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to epsilon B ~ 5 × 10-3. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization both of which are expected to be commonplace. We also find that the turbulent kinetic energy spectrum for the case studied obeys Kolmogorov's 5/3 law and that the electromagnetic energy spectrum is essentially flat with the bulk of the electromagnetic energy at small scales.
    Preview · Article · Feb 2009 · The Astrophysical Journal
  • Peng Wang · Tom Abel · Weiqun Zhang
    [Show abstract] [Hide abstract] ABSTRACT: Galaxy formation and stellar explosions involve nonlinear interplay of many physical processes. To study the death of stars, especially massive star core collapse event, we have developed a AMR relativistic hydro code based on ENZO. We will discuss the algorithms used. We have also extended those algorithms to Newtonian hydro and MHD to apply to galaxy formation and star formation.
    No preview · Article · Mar 2008
  • Source
    Peng Wang · Tom Abel
    [Show abstract] [Hide abstract] ABSTRACT: Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
    Preview · Article · Jan 2008 · The Astrophysical Journal
  • Source
    Peng Wang · Tom Abel · Weiqun Zhang
    [Show abstract] [Hide abstract] ABSTRACT: Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used the method of lines to discretize the SRHD equations spatially and a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code {\sl enzo}. We discuss the coupling of the AMR framework with the relativistic solvers. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. We also present the results of two 3d simulations of astrophysical jets: AGN jets and GRB jets. Resolution study of those two cases further highlights the need of high resolutions to calculate accurately relativistic flow problems. Comment: 14 pages, 23 figures. A section on 3D GRB jet simulation added. Accepted by ApJS
    Preview · Article · Mar 2007 · The Astrophysical Journal Supplement Series
  • Source
    Peng Wang · Tom Abel
    [Show abstract] [Hide abstract] ABSTRACT: In a hierarchical picture of galaxy formation virialization continually transforms gravitational potential energy into kinetic energies of the baryonic and dark matter. For the gaseous component the kinetic, turbulent energy is transformed eventually into internal thermal energy through shocks and viscous dissipation. Traditionally this virialization and shock heating has been assumed to occur instantaneously allowing an estimate of the gas temperature to be derived from the the virial temperature defined from the embedding dark matter halo velocity dispersion. As the mass grows the virial temperature of a halo grows. Mass accretion hence can be translated into a heating term. We derive this heating rate from the extended Press Schechter formalism and demonstrate its usefulness in semi-analytical models of galaxy formation. Our method explicitly conserves energy unlike the previous impulsive heating assumptions. Our formalism can trivially be applied in all current semi-analytical models as the heating term can be computed directly from the underlying merger trees. Our analytic results for the first cooling halos and the transition from cold to hot accretion are in agreement with numerical simulations.
    Preview · Article · Feb 2007 · The Astrophysical Journal

Publication Stats

414 Citations
52.89 Total Impact Points


  • 2010-2013
    • Stanford University
      • Department of Physics
      Palo Alto, California, United States
  • 2007
    • University of California, Santa Barbara
      • Kavli Institute for Theoretical Physics
      Santa Barbara, California, United States