Philip A Cole

Howard Hughes Medical Institute, Ashburn, Virginia, United States

Are you Philip A Cole?

Claim your profile

Publications (197)1733.86 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible lysine acetylation is one of the most important protein posttranslational modifications that plays essential roles in both prokaryotes and eukaryotes. However, only a few lysine deacetylases (KDACs) have been identified in prokaryotes, perhaps in part due to their limited sequence homology. Herein, we developed a 'clip-chip' strategy to enable unbiased, activity-based discovery of novel KDACs in the Escherichia coli proteome. In-depth biochemical characterization confirmed that YcgC is a serine hydrolase involving Ser200 as the catalytic nucleophile for lysine deacetylation and does not use NAD(+) or Zn(2+) like other established KDACs. Further, in vivo characterization demonstrated that YcgC regulates transcription by catalyzing deacetylation of Lys52 and Lys62 of a transcriptional repressor RutR. Importantly, YcgC targets a distinct set of substrates from the only known E. coli KDAC CobB. Analysis of YcgC's bacterial homologs confirmed that they also exhibit KDAC activity. YcgC thus represents a novel family of prokaryotic KDACs.
    Preview · Article · Dec 2015 · eLife Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). Results: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. Conclusions: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.
    Preview · Article · Nov 2015 · Epigenetics & Chromatin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1). Results Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin. Conclusions We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.
    Full-text · Article · Nov 2015 · Epigenetics & Chromatin
  • Zan Chen · Philip A Cole
    [Show abstract] [Hide abstract]
    ABSTRACT: Reversible protein phosphorylation is critically important in biology and medicine. Hundreds of thousands of sites of protein phosphorylation have been discovered but our understanding of the functions of the vast majority of these post-translational modifications is lacking. This review describes several chemical and biochemical methods that are under development and in current use to install phospho-amino acids and their mimics site-specifically into proteins. The relative merits of total chemical synthesis, semisynthesis, and nonsense suppression strategies for studying protein phosphorylation are discussed in terms of technical simplicity, scope, and versatility. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Jul 2015 · Current opinion in chemical biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ghrelin-O-Acyltransferase (GOAT) is an 11-transmembrane integral membrane protein that octanoylates the metabolism-regulating peptide hormone ghrelin at Ser3 and may represent an attractive target for the treatment of type II diabetes and the metabolic syndrome. Protein octanoylation is unique to ghrelin in humans, and little is known about the mechanism of GOAT or of related protein-O-acyltransferases HHAT or PORC. In this study, we explored an in vitro microsomal ghrelin octanoylation assay to analyze its enzymologic features. Measurement of Km for 10-mer, 27-mer, and synthetic Tat-peptide-containing ghrelin substrates provided evidence for a role of charge interactions in substrate binding. Ghrelin substrates with amino-alanine in place of Ser3 demonstrated that GOAT can catalyze the formation of an octanoyl-amide bond at a similar rate compared with the natural reaction. A pH-rate comparison of these substrates revealed minimal differences in acyltransferase activity across pH 6.0-9.0, providing evidence that these reactions may be relatively insensitive to the basicity of the substrate nucleophile. The conserved His338 residue was required both for Ser3 and amino-Ala3 ghrelin substrates, suggesting that His338 may have a key catalytic role beyond that of a general base. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Jul 2015 · Bioorganic Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural biology has yielded many significant insights into inhibitor binding and isoform selectivity, directing the design of many important clinical candidates. To date, structural studies have focused on the ATP-binding site and ATP-competitive inhibitors. We have recently determined the structure of PI3Kα; in complex with the soluble lipid substrate mimetic, diC4-PIP2. The substrate binds in a positively charged pocket, defined by the activation and P-loops of the kinase domain, and the iSH2 domain of p85. The positively charged residues responsible for binding PIP2 that are present on the activation loop of Class I PI3K are missing in Class II and III PI3K. This explains why these two classes have lower affinity for PIP2. The complex structure provides insights into the catalysis and regulation of PI3K. Key interactions between the activation loop and nSH2 domain may modulate active and inactive conformations of the enzyme upon the binding of phosphorylated receptor tyrosine kinases. In addition, a second lipid substrate was identified in the structure. It binds in a hydrophobic pocket between the Adaptor Binding Domain (ABD), kinase domain and iSH2 domain of p85. Fluorescence quenching studies confirm the ability of PI3K to bind an additional PIP2 molecule.
    Full-text · Article · Jul 2015 · Molecular Cancer Therapeutics
  • Source
    Nam Chu · Philip A Cole
    [Show abstract] [Hide abstract]
    ABSTRACT: Bruton's tyrosine kinase, an enzyme that is important for B cell function, can be activated in a number of ways.
    Preview · Article · Apr 2015 · eLife Sciences
  • Source
    Chuan He · Philip Cole

    Preview · Article · Mar 2015 · Chemical Reviews
  • Source
    Article: Ghrelin
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. Scope of review: In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. Major conclusions: In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
    Full-text · Article · Mar 2015 · Molecular Metabolism
  • Source
    Beverley M Dancy · Philip A Cole
    [Show abstract] [Hide abstract]
    ABSTRACT: Three decades of research into p300/CBP, since the first report in 1985, have revealed its importance to normal cell health and etiology of disease. p300/CBP is a key enzyme in higher eukaryotes, where it acts as an effector in myriad major cellular signaling pathways, which modulate protein functions and gene expression in response to a variety of signals. This is accomplished by binding of over 400 protein ligands to its various protein interaction-mediating domains and the acetylation of ∼100 protein substrates. The unusual hit-and-run kinetic mechanism has permitted the identification of p300/CBP-specific acetyltransferase inhibitors, which have shown promising effects in studies in living cells. The protein acetylation and protein binding functions of p300/CBP are intricately interrelated, and both are targets of pharmacological interventions that may have considerable therapeutic applications.
    Full-text · Article · Jan 2015 · Chemical Reviews
  • Zhihong Wang · Philip A Cole
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinases transfer a phosphoryl group from ATP onto target proteins and play a critical role in signal transduction and other cellular processes. Here, we review the kinase kinetic and chemical mechanisms and their application in understanding kinase structure and function. Aberrant kinase activity has been implicated in many human diseases, in particular cancer. We highlight applications of technologies and concepts derived from kinase mechanistic studies that have helped illuminate how kinases are regulated and contribute to pathophysiology.
    No preview · Article · Nov 2014 · Methods in enzymology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets. The HDX-MS workflow was optimized to accurately detect low-affinity peptide-protein interactions by use of ion mobility, electron transfer dissociation, non-binding control peptides and statistical analysis of replicate data. We show that HDX-MS can identify regions in the two epigenetic regulator proteins KDM4C and KDM1A that are perturbed through weak interactions with PD-identified peptides. Two peptides cause reduced HDX on opposite sides of the active site of KDM4C, indicating distinct binding modes. In contrast, the perturbation site of another PD-selected peptide inhibiting the function of KDM1A maps to a GST-tag. Our results demonstrate that HDX-MS can validate and map weak peptide-protein interactions, and pave the way for understanding and optimizing the binding of peptide scaffolds identified through PD and similar ligand discovery approaches.
    Full-text · Article · Oct 2014 · Analytical Chemistry
  • Source

    Full-text · Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.
    Full-text · Article · Sep 2014 · eLife Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.
    No preview · Article · Sep 2014 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: S-Adenosyl-l-methionine (SAM) is recognized as an important cofactor in a variety of biochemical reactions. As more proteins and pathways that require SAM are discovered it is important to establish a method to quickly identify and characterize SAM binding proteins. The affinity of S-adenosyl-l-homocysteine (SAH) for SAM binding proteins was used to design two SAH-derived Capture Compounds (CCs). We demonstrate interactions of the proteins COMT and SAHH with an SAH-CC with biotin used in conjunction with streptavidin-HRP. After demonstrating SAH-dependent photo-crosslinking of the CC to these proteins, we use a CC labeled with a fluorescein tag to measure binding affinity via fluorescence anisotropy. We then used this approach to show and characterize binding of SAM to the PR domain of PRDM2, a lysine methyltransferase with putative tumor suppressor activity. We calculated the Kd for COMT, SAHH, and PRDM2 (24.1 ± 2.2 μM, 6.0 ± 2.9 μM, 10.06 ± 2.87 μM respectively) and found them to be close to previously established Kd values of other SAM binding proteins. Here, we present new methods to discover and characterize SAM and SAH binding proteins using fluorescent Capture Compounds.
    No preview · Article · Aug 2014 · Analytical Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: T-regulatory (Treg) cells are important to immune homeostasis, and Treg cell deficiency or dysfunction leads to autoimmune disease. A histone/protein acetyltransferase (HAT), p300, was recently found to be important for Treg function and stability, but further insights into the mechanisms by which p300 or other HATs affect Treg biology are needed. Here we show that CBP, a p300 paralog, is also important in controlling Treg function and stability. Thus, while mice with Treg-specific deletion of CBP or p300 developed minimal autoimmune disease, the combined deletion of CBP and p300 led to fatal autoimmunity by 3 to 4 weeks of age. The effects of CBP and p300 deletion on Treg development are dose dependent and involve multiple mechanisms. CBP and p300 cooperate with several key Treg transcription factors that act on the Foxp3 promoter to promote Foxp3 production. CBP and p300 also act on the Foxp3 conserved noncoding sequence 2 (CNS2) region to maintain Treg stability in inflammatory environments by regulating pCREB function and GATA3 expression, respectively. Lastly, CBP and p300 regulate the epigenetic status and function of Foxp3. Our findings provide insights into how HATs orchestrate multiple aspects of Treg development and function and identify overlapping but also discrete activities for p300 and CBP in control of Treg cells.
    No preview · Article · Aug 2014 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The supporting information for our paper. Includes details of all the shRNAs tested against p300 and CBP in stable cell lines, the C107 synthetic chemistry (a new compound), and the detailed enzyme kinetic characterization of our new p300 BHC (bromodomain+HAT domain+C/H3 domain) which is easily expressed and purified from insect cells (easier than HAT alone by EPL or full length).
    Full-text · Dataset · Aug 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report two crystal structures of the wild-type phosphatidylinositol 3-kinase α (PI3Kα) heterodimer refined to 2.9 Å and 3.4 Å resolution: the first as the free enzyme, the second in complex with the lipid substrate, diC4-PIP₂, respectively. The first structure shows key interactions of the N-terminal SH2 domain (nSH2) and iSH2 with the activation loop that suggest a mechanism by which the enzyme is inhibited in its basal state. In the second structure, the lipid substrate binds in a positively charged pocket adjacent to the ATP-binding site, bordered by the P-loop, the activation loop and the iSH2 domain. An additional lipid-binding site was identified at the interface of the ABD, iSH2 and kinase domains. The ability of PI3Kα to bind an additional PIP₂ molecule was confirmed in vitro by fluorescence quenching experiments. The crystal structures reveal key differences in the way the nSH2 domain interacts with wild-type p110α and with the oncogenic mutant p110αH1047R. Increased buried surface area and two unique salt-bridges observed only in the wild-type structure suggest tighter inhibition in the wild-type PI3Kα than in the oncogenic mutant. These differences may be partially responsible for the increased basal lipid kinase activity and increased membrane binding of the oncogenic mutant.
    Full-text · Article · Jul 2014 · Oncotarget
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging as the active sites of KDM1A-B and KDM-4A-D histone demethylases, respectively, are highly conserved. Most inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide sequence, or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation and chemical modifications. Hydrogen/deuterium exchange mass spectrometry revealed that the peptide-based inhibitors target KDM4C through substrate-independent interactions located on the surface remote from the active site within less conserved regions of KDM4C. The sites discovered in this study provide a new approach of targeting KDM4C through substrate- and cofactor-independent interactions, and may be further explored to develop potent selective inhibitors and biological probes for the KDM4 family.
    Full-text · Article · Jul 2014 · ACS Chemical Biology

Publication Stats

12k Citations
1,733.86 Total Impact Points

Institutions

  • 2015
    • Howard Hughes Medical Institute
      Ashburn, Virginia, United States
    • Monash University (Australia)
      • Department of Physiology
      Melbourne, Victoria, Australia
  • 2005-2015
    • Johns Hopkins Medicine
      • Department of Pharmacology and Molecular Sciences
      Baltimore, Maryland, United States
  • 2000-2015
    • Johns Hopkins University
      • Department of Pharmacology and Molecular Sciences
      Baltimore, Maryland, United States
  • 2014
    • Columbia University
      • Department of Biochemistry and Molecular Biophysics
      New York, New York, United States
  • 2009
    • Regions Hospital
      Saint Paul, Minnesota, United States
  • 2002
    • National Institute of Arthritis and Musculoskeletal and Skin Diseases
      Maryland, United States
  • 1998-2002
    • The Rockefeller University
      • Laboratory of Molecular Biophysics
      New York, New York, United States
  • 2001
    • Cornell University
      Итак, New York, United States
  • 1997-1998
    • Harvard University
      Cambridge, Massachusetts, United States
    • CUNY Graduate Center
      New York, New York, United States