Paola Lenzi

Università di Pisa, Pisa, Tuscany, Italy

Are you Paola Lenzi?

Claim your profile

Publications (94)257.78 Total impact

  • Paola Lenzi · Guido Bocci · Gianfranco Natale

    No preview · Article · Feb 2016 · Angiogenesis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic lateral sclerosis (ALS) is characterized by massive loss of motor neurons. Data from ALS patients and experimental models indicate that mitochondria are severely damaged within dying or spared motor neurons. Nonetheless, recent data indicate that mitochondrial preservation, although preventing motor neuron loss, fails to prolong lifespan. On the other hand, the damage to motor axons plays a pivotal role in determining both lethality and disease course. Thus, in the present article each motor neuron compartment (cell body, central, and peripheral axons) of G93A SOD-1 mice was studied concerning mitochondrial alterations as well as other intracellular structures. We could confirm the occurrence of ALS-related mitochondrial damage encompassing total swelling, matrix dilution and cristae derangement along with non-pathological variations of mitochondrial size and number. However, these alterations occur to a different extent depending on motor neuron compartment. Lithium, a well-known autophagy inducer, prevents most pathological changes. However, the efficacy of lithium varies depending on which motor neuron compartment is considered. Remarkably, some effects of lithium are also evident in wild type mice. Lithium is effective also in vitro, both in cell lines and primary cell cultures from the ventral spinal cord. In these latter cells autophagy inhibition within motor neurons in vitro reproduced ALS pathology which was reversed by lithium. Muscle and glial cells were analyzed as well. Cell pathology was mostly severe within peripheral axons and muscles of ALS mice. Remarkably, when analyzing motor axons of ALS mice a subtotal clogging of axoplasm was described for the first time, which was modified under the effects of lithium. The effects induced by lithium depend on several mechanisms such as direct mitochondrial protection, induction of mitophagy and mitochondriogenesis. In this study, mitochondriogenesis induced by lithium was confirmed in situ by a novel approach using [2-3H]-adenosine.
    Full-text · Article · Nov 2015 · Frontiers in Cellular Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosomal catabolic route for protein aggregates and damaged organelles which in different stress conditions, such as starvation, generally improves cell survival. An impairment of this degradation pathway has been reported to occur in many neurodegenerative processes. Trimethyltin (TMT) is a potent neurotoxin present as an environmental contaminant causing tremors, seizures and learning impairment in intoxicated subjects. The present data show that in rat primary astrocytes autophagic vesicles (AVs) appeared after few hours of TMT treatment. The analysis of the autophagic flux in TMT-treated astrocytes was consistent with a block of the late stages of autophagy and was accompanied by a progressive accumulation of the microtubule associated protein light chain 3 (LC3) and of p62/SQSTM1. Interestingly, an increased immureactivity for p62/SQSTM1 was also observed in hippocampal astrocytes detected in brain slices of TMT-intoxicated rats. The time-lapse recordings of AVs in EGFP-mCherry-LC3B transfected astrocytes demonstrated a reduced mobility of autophagosomes after TMT exposure respect to control cells. The observed block of the autophagic flux cannot be overcome by known autophagy inducers such as rapamycin or 0.5mM lithium. Although ineffective when used at 0.5mM, lithium at higher concentrations (2mM) was able to protect astrocyte cultures from TMT toxicity. This effect correlated well with its ability to determine the phosphorylation/inactivation of glycogen kinase synthase-3β (GSK-3β).
    No preview · Article · Oct 2015 · NeuroToxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pisa (Italia). A pocos pasos da la Piazza dei Miracoli y de la famosísima torre inclinada, donde cada día miles de turistas desfilan fotografiándose en la esforzada tarea de corregir su inclinación, se encuentra una zona igualmente concurrida, animada por el fervor estudiantil. Se trata del área de la antigua Escuela de Medicina donde tiene su sede la sección de Anatomía Humana del Departamento de Investigación Traslacional y de las Nuevas Tecnologías en Medicina y Cirugía de la Universidad de Pisa. Aquí, entre aulas didácticas, laboratorios y bibliotecas se encuentra también el Museo de Anatomía Humana que lleva el nombre de Filippo Civinini, médico y anatomista italiano. E n su interior podemos admirar numerosos preparados anatómicos de gran interés histórico y científico, y entre éstos, sobresalen algunos materiales insólitos dado el contexto. Se trata de una amplia y variada colección de piezas de notable interés, en su mayor parte prove-nientes de Sudamérica: centenares de restos, entre ellos, vasijas precolombinas pertenecientes a las principales culturas cos-teras pre-incaicas Chimú y Chancay, ajuares funerarios pertenecientes a cinco fardos de estas mismas poblaciones, momias y restos esqueléticos humanos y animales. Esta abundante cantidad de piezas llegaron a Italia en un periodo comprendido entre 1869 y 1872, es decir en el período en el que el médico y explorador Carlo Regnoli se dirigió a Sudamérica recorriendo Perú, Bolivia, Chile y Argentina (Bedini y otros, 2003; Natale y otros, 2006).
    Full-text · Article · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long tradition of the anatomical Pisan school, which began with Andreas Vesalius (1514-1564) and continued by other illustrious masters as Gabbriello Falloppio (1523-1563), Lorenzo Bellini (1643-1704), Paolo Mascagni (1742-1815) and Filippo Pacini (1812-1883), laid the foundations for the creation of a Museum of Human Anatomy at Pisa. Throughout the centuries, there were already a lot of anatomical preparations of admirable workmanship and undoubted scientific and cultural attractions awaiting a suitable location.
    Full-text · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: -Pentraxin 3 (PTX3), the prototype of long pentraxins, has been described associated with endothelial dysfunction in different cardiovascular disorders. So far, no study has evaluated the possible direct effect of PTX3 on vascular function. -Through in-vitro experiments of vascular reactivity and ultrastructural analyses, we demonstrate that PTX3 induces, per se, dysfunction and morphological changes of the endothelial layer through a P-selectin/metalloproteinase-1 (MMP1) pathway. The latter hampered the detachment of eNOS from Caveolin1, leading to an impairment of nitric oxide (NO) signaling. In vivo studies showed that the administration of PTX3 to wild-type mice induced endothelial dysfunction and increased blood pressure, an effect absent in P-selectin-deficient mice. In isolated endothelial cells (HUVEC), PTX3 significantly blunted NO production through the MMP1 pathway. Finally, using ELISA, we found that hypertensive patients (n=31) have higher plasma levels of PTX3 and its mediators P-Selectin and MMP1 than normotensive subjects (n=21). -Our data show for the first time a direct role of PTX3 on vascular function and blood pressure homeostasis, identifying the molecular mechanisms involved. The findings in humans suggest that PTX3, P-selectin and MMP-1 may be novel biomarkers that predict the onset of vascular dysfunction in hypertensive patients.
    Full-text · Article · Mar 2015 · Circulation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that autophagy alterations are present in a variety of neurological disorders. These range from neurodegenerative diseases to acute neurological insults. Thus, despite a role of autophagy was investigated in a variety of neurological diseases, only recently these studies included epilepsy. This was fostered by the evidence that rapamycin, a powerful autophagy inducer, strongly modulates a variety of seizure models and epilepsies. These findings were originally interpreted as the results of the inhibition exerted by rapamycin on the molecular complex named "mammalian Target of Rapamycin" (mTOR). Recently, an increasing number of papers demonstrated that mTOR inhibition produces a strong activation of the autophagy machinery. In this way, it is now increasingly recognized that what was once defined as mTORpathy in epileptogenesis may be partially explained by abnormalities in the autophagy machinery. The present review features a brief introductory statement about the autophagy machinery and discusses the involvement of autophagy in seizures and epilepsies. An emphasis is posed on evidence addressing both pros and cons making it sometime puzzling and sometime evident, the role of autophagy in the epileptic brain.
    No preview · Article · Sep 2014 · Journal of Neural Transmission
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite a number of genetic mutations and molecular mechanisms are recognized to participate in amyotrophic lateral sclerosis (ALS), such a devastating neurological disorder still lacks a substantial cure. The present manuscript rather than a general overview of potential therapeutic approaches focuses on novel research findings detailing novel molecular mechanisms which appear to be promising for developing future ALS therapeutics. A special emphasis is given to the abnormal autophagy status and to those autophagy substrates which aggregate in the form of misfolded proteins. In fact, as reviewed in the first part of the manuscript, altered autophagy pathway is present in most genetic mutations responsible for familial ALS. These mutations impair clearance of autophagy substrates, which determines accumulation of giant altered mitochondria and misfolded proteins. Therefore, a considerable piece of the review is dedicated to unconventional processing of misfolded proteins leading to unconventional protein secretions which may underlie a prionoid cell-to-cell spreading of ALS neuropathology. The intimate mechanisms regulating these steps are analyzed in order to comprehend which potential therapeutic targets might be considered in future studies. At the same time, negative findings concerning recent trials are explained in light of novel disease mechanisms. In the final part of the review the replacement therapy with focal stem cells implantation is discussed in relationship with toxic mechanisms operating in the intercellular space of the spinal cord and motor-related areas.
    No preview · Article · Jun 2014 · Current Medicinal Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype ( β III-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.
    Full-text · Article · Apr 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR). The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window) stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.
    Full-text · Article · Jan 2014 · International Journal of Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study we investigated the effect of two different exercise protocols on fibre composition and metabolism of two specific muscles of mice: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P<0.0001 and P<0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P<0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P<0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.
    Full-text · Article · Dec 2013 · Biology of Sport
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Morphological, ultrastructural, and molecular‐sequence data were used to assess the phylogenetic position of a tetraflagellate green alga isolated from soil samples of a saline dry basin near F'derick, Mauritania. This alga can grow as individual cells or form non‐coenobial colonies of up to 12 individuals. It has a parietal chloroplast with an embedded pyrenoid covered by a starch sheath and traversed by single parallel thylakoids, and an eyespot located in a parietal position opposite to the flagellar insertion. Lipid vacuoles are present in the cytoplasm. Microspectroscopy indicated the presence of chlorophylls a and b, with lutein as the major carotenoid in the chloroplast, while the eyespot spectrum has a shape typical of green‐algal eyespots. The cell has four flagella, two of them long and two considerably shorter. Sequence data from the 18S rRNA gene and ITS2 were obtained and compared with published sequences for green algae. Results from morphological and ultrastructural examinations and sequence analysis support the placement of this alga in the Chlorophyceae, as Tetraflagellochloris mauritanica L. Barsanti et A. Barsanti, gen. et sp. nov.
    Full-text · Article · Feb 2013 · Journal of Phycology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Formation, aggregation and transmission of abnormal proteins are common features in neurodegenerative disorders including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease. The mechanisms underlying protein alterations in neurodegenerative diseases remain controversial. Novel findings highlighted altered protein clearing systems as common biochemical pathways which generate protein misfolding, which in turn causes protein aggregation and protein spreading. In fact, proteinaceous aggregates are prone to cell-to-cell propagation. This is reminiscent of what happens in prion disorders, where the prion protein misfolds thus forming aggregates which spread to neighbouring cells. For this reason, the term prionoids is currently used to emphasize how several misfolded proteins are transmitted in neurodegenerative diseases following this prion-like pattern. Histochemical techniques including the use of specific antibodies covering both light and electron microscopy offer a powerful tool to describe these phenomena and investigate specific molecular steps. These include: prion like protein alterations; glycation of prion-like altered proteins to form advanced glycation end-products (AGEs); mechanisms of extracellular secretion; interaction of AGEs with specific receptors placed on neighbouring cells (RAGEs). The present manuscript comments on these phenomena aimed to provide a consistent scenario of the available histochemical approaches to dissect each specific step.
    Full-text · Article · Jan 2013 · European journal of histochemistry: EJH

  • No preview · Article · Oct 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of training are dependent on complex, adaptive changes which are induced by acute physical exercise at different levels. In particular, evidence shows that the hypothalamus-pituitary-adrenocortical axis, as well as the sympatho-adrenomedullary system, is mainly involved in mediating the physiological effects of physical exercise. The aim of the present study was to investigate, through a morphological and biochemical approach, the effects of training on the adrenal gland of mice, following two different protocols consisting of either low- or high-intensity training. Mice were run daily on a motorised treadmill for 8 weeks, at a velocity corresponding to 60% (low-intensity exercise) or 90% (high-intensity exercise) of the maximal running velocity previously determined by an incremental exercise test. We found that physical exercise produced an increase in the adrenal gland size compared with the control (sedentary) mice. The increase was 31.04% for mice that underwent high-intensity exercise and 10.08% for mice that underwent low intensity exercise, and this appeared to be the result of an increase in the area of both the adrenal cortex and adrenal medulla. Morphological analysis of the adrenal cortex showed that both types of exercise produced an increase in cytoplasmic vacuoles in steroidogenic cells, appearing more abundant after high-intensity exercise. No change was found in the reticulate zone. In the adrenal medulla, despite the absence of morphological changes, immunohistochemistry for tyrosine hydroxylase, dopamine β-hydroxylase and phenyl-ethanolamine-N-methyltransferase demonstrated an increased immunopositivity for these cathecolamine-synthesizing enzymes after intense exercise. These results were confirmed by immunoblot accompanied by densitometric analysis.
    Full-text · Article · Jun 2012 · Histology and histopathology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the PTEN-induced putative kinase1 (PINK1) represent the second most frequent cause of autosomal recessive Parkinson's disease. The PINK1 protein mainly localizes to mitochondria and interacts with a variety of proteins, including the pro-autophagy protein beclin1 and the ubiquitin-ligase parkin. Upon stress conditions, PINK1 is known to recruit parkin at the surface of dysfunctional mitochondria and to activate the mitophagy cascade. Aim of this study was to use a simple and highly reproducible catecholamine cell model and transmission electron microscopy to characterize whether PINK1 could affect mitochondrial homeostasis, the recruitment of specific proteins at mitochondria, mitophagy and apoptosis. Samples were analyzed both in baseline conditions and following treatment with methamphetamine (METH), a neurotoxic compound which strongly activates autophagy and produces mitochondrial damage. Our data provide robust sub-cellular evidence that the modulation of PINK1 levels dramatically affects the morphology and number of mitochondria and the amount of cell death. In particular, especially upon METH exposure, PINK1 is able to increase the total number of mitochondria, concurrently recruit beclin1, parkin and ubiquitin and enhance the clearance of damaged mitochondria. In the absence of functional PINK1 and upon autophagy stress, we observe a failure of the autophagy system at large, with marked accumulation of dysfunctional mitochondria and dramatic increase of apoptotic cell death. These findings highlight the strong neuroprotective role of PINK1 as a key protein in the surveillance and regulation of mitochondrial homeostasis.
    No preview · Article · Jun 2012 · Archives italiennes de biologie
  • [Show abstract] [Hide abstract]
    ABSTRACT: Capecitabine plus oxaliplatin combination (XELOX) is the first-line treatment in metastatic colorectal cancer. Here we report a case of acute, severe but substantially reversible, neuromuscular and cardiac toxicity following XELOX chemotherapy. Muscle biopsy findings were consistent with a toxic myopathy with necrotizing features and vacuolar changes; COX-negative fibers were also present. The time course could support a main role for capecitabine, which may have some neurotoxic effects (more frequently central), but a detrimental interaction between the two drugs cannot be ruled out and further studies are needed.
    No preview · Article · May 2012 · Neuromuscular Disorders
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trimethyltin (TMT) is a triorganotin compound which determines neurodegeneration of specific brain areas particularly damaging the limbic system. Earlier ultrastructural studies indicated the formation of autophagic vacuoles in neurons after TMT intoxication. However, no evaluation has been attempted to determine the role of the autophagic pathway in TMT neurotoxicity. To assess the contribution of autophagy to TMT-induced neuronal cell death, we checked the vulnerability of neuronal cultures to TMT after activation or inhibition of autophagy. Our results show that autophagy inhibitors (3-methyladenine and L-asparagine) greatly enhanced TMT neurotoxicity. Conversely, known activators of autophagy, such as lithium and rapamycin, displayed neuroprotection against this toxic compound. Due to its diverse targets, the action of lithium was complex. When lithium was administered according to a chronic treatment protocol (6 days pretreatment) it was able to rescue both hippocampal and cortical neurons from TMT (or from glutamate toxicity used as reference). This effect was accompanied by an increased phosphorylation of glycogen synthase kinase 3 which is a known target for lithium neuroprotection. If the pre-incubation time was reduced to 2 h (acute treatment protocol), lithium was still able to counteract TMT toxicity in hippocampal but not in cortical neurons. The neuroprotective effect of lithium acutely administered against TMT in hippocampal neurons can be completely reverted by an excess of inositol and is possibly related to the inactivation of inositol monophosphatase, a key regulator of autophagy. These data indicate that TMT neurotoxicity can be dramatically modified, at least in vitro, by lithium addition which seems to act through different mechanisms if acutely or chronically administered.
    No preview · Article · Mar 2012 · Journal of Neural Transmission
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noise is an environmental stressor increasingly more present in modern life and, in particular, in a variety of recreational contexts. The aim of this work is to show the effects of noise on the myocardium and adrenal gland, through a careful review of the literature dealing with the peripheral effects of noise exposure in experimental and clinical studies. Noise induces adverse effects in human health, principally involving the cardiovascular and autonomic nervous systems, and the endocrine apparatus. Several factors in recreational environments potentially worsen the effects induced by loud noise. Among these, the intake of 3,4-methylenedioxymethamphetamine (MDMA) is frequently associated with noise exposure in recreational situations, because of its high compliance within social and relaxation settings. For this reason, MDMA is defined as a club drug-as its intake by young people often occurs in association with other factors, such as aggregation, high temperatures, and noise. It is known that self-administration of MDMA by humans causes severe toxicity. In particular, the myocardium is affected early after MDMA intake-resulting in tachycardia, hypertension, and arrhythmia. Furthermore, MDMA alters the activity of the adrenal glands by elevating catecholamines and corticosterone levels. This review shows that combining MDMA and loud noise exposure potentiates the effects that are produced by each single stimulant alone as seen in experimental animal models. The convergence of the effects of prolonged loud noise exposure and the consumption of MDMA on the same system might explain the sudden fatal events that happen in recreational situations. Microsc. Res. Tech., 2011. © 2010 Wiley-Liss, Inc.
    No preview · Article · Jan 2010 · Microscopy Research and Technique
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the genotype-dependency of morphological abnormalities in peripheral cells from Huntington disease (HD) patients. Cell cultures derived from skin and muscle biopsies showed a different set of abnormalities depending on the genotype (i.e. heterozygous and homozygous for CAG mutations) and the tissue (i.e. fibroblasts and myoblasts). In general, homozygotes' cell lines showed massive ultrastructural damage of specific cell organelles compared with age matched control. These consist of vacuolization, deranged crests and matrix found within giant mitochondria. In addition, enlarged endoplasmic reticulum and the occurrence of numerous autophagic vacuoles, which were similar to those occurring in neurons within affected brain areas, were described. Despite a comparable dose-dependency on mitochondrial changes, this kind of alterations differ in fibroblasts compared with myoblasts. In fact, the internal mitochondrial structure was merely lost in myoblasts, while it shows pathological re-organization within fibroblasts, where altered crests appear as multilamellar circles. These data indicate that ultrastructural abnormalities from peripheral tissues of HD patients can be used as potential disease markers which are easier to get than autoptic brains. Moreover, the occurrence of ultrastructural cell pathology reminiscent of neuronal degeneration in HD, suggests the use of human peripheral cells as a tool to investigate the pathogenic cascade subsequent to huntingtin dysregulation.
    No preview · Article · Oct 2009 · Journal of Neural Transmission