Ming Jiang

The Hong Kong University of Science and Technology, Chiu-lung, Kowloon City, Hong Kong

Are you Ming Jiang?

Claim your profile

Publications (2)14.8 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Last decade has led to the accumulation of large amounts of data on cancer genetics, opening an unprecedented access to the mapping of cancer genes in the human genome. Single-nucleotide polymorphisms (SNPs), the most common form of DNA variation in humans, emerge as an invaluable tool for cancer association studies. These genotypic markers can be used to assay how alleles of candidate genes correlate with the malignant phenotype, and may provide new clues into the genetic modifications that characterize cancer onset. In this cancer-oriented study, we detail an SNP mining strategy based on the analysis of expressed sequence tags among publicly available databases. Our whole-genome approach provides a comprehensive and unbiased description of nonsynonymous SNPs (nsSNPs) in tumoral versus normal tissues. To gain further insights into the possible relationships between genetic variation and altered phenotype, locations of a subset of nsSNPs were mapped onto protein domains known to be critical for protein function. Computational methods were also used to predict the potential impact of these cancer-associated nsSNPs on protein structure and function. We illustrate our approach through the detailed biochemical and structural characterization of a previously unknown cancer-associated mutation (G79C) affecting the 8 kDa dynein light chain (DNCL1).
    Full-text · Article · Oct 2005 · Oncogene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postsynaptic density (PSD) proteins include scaffold, cytoskeletal, and signaling proteins that structurally and functionally interact with glutamate receptors and other postsynaptic membrane proteins. The molecular mechanisms regulating the assembly of PSD proteins and their associations with synapses are still widely unknown. We investigated the molecular mechanisms of Shank1 targeting and synapse assembly by looking at the function of guanylate kinase-associated protein (GKAP) and PSD-95 interactions. Shank1 when it is not associated to GKAP, which binds to the Shank PSD-95-Discs Large-zona occludens-1 domain, forms filamentous and fusiform structures in which the Src homology 3 domain specifically interacts with the ankyrin repeat domain, thus allowing its multimerization via a novel form of intermolecular interaction. Surprisingly, in both COS-7 cells and hippocampal neurons, GKAP forms insoluble aggregates with Shank that colocalize with heat shock protein 70 and neurofilaments, two markers of the aggresomes in which misfolded proteins accumulate. However, the two proteins are organized in clusters in COS cells and synaptic clusters in neurons when both are overexpressed and associated with wild-type PSD-95, but not with palmitoylation-deficient PSD-95. Synaptic activity in neurons induces the formation of Shank and GKAP intracellular aggregation and degradation. Similarly, the overexpression of a GKAP mutant that is incapable of binding PSD-95 induces Shank aggregation and degradation in neurons. Our data suggest a possible functional and structural role of the PSD-95-GKAP complex in Shank and PSD protein assembly and stability to synapses.
    No preview · Article · Nov 2004 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience