Jing Wang

Wayne State University, Detroit, Michigan, United States

Are you Jing Wang?

Claim your profile

Publications (2)12.9 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.
    Full-text · Article · Jun 2004 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-risk human papillomaviruses (HPVs) are etiologically linked to human cervical and oral cancers. The E6 and E7 oncoproteins encoded by HPV target host cell tumor suppressor proteins. E6 induces proteolysis of p53 through the ubiquitin-proteasome pathway. Recent studies showed that overexpression of E7 caused proteolytic degradation of the tumor suppressor Rb. However, unlike p53, Rb is not regulated by proteolysis in normal cells. In addition, it was unclear whether in its natural context E7 regulates Rb through the ubiquitin-proteasome pathway. Therefore, we sought to determine whether Rb is regulated by the ubiquitin-proteasome pathway in HPV-containing tumor cells. We carried out a detailed analysis in Caski cells, that are derived from HPV-containing cervical cancer tissues. Studies with various protease inhibitors revealed that Rb is regulated specifically by the ubiquitin-proteasome pathway in HPV-containing cervical tumor cells. Several inhibitors of the 26S proteasome significantly increased the level of Rb in the Caski cells. Rb controls cell growth by forming complexes with the E2F-family transcription factors. Surprisingly, in spite of a significant accumulation of the hypophosphorylated form of Rb, no Rb/E2F complex was detectable in the proteasome inhibitor treated cells. Further analysis revealed that there was an increased accumulation of the E7 oncoprotein. We showed that the proteasome inhibitors simultaneously blocked the proteolysis of E7 and Rb, suggesting that E7 is also regulated by the ubiquitin-dependent proteolysis in cervical cancer cells. Taken together, this study suggests that targeted inhibition of Rb proteolysis will be required for restoring Rb function in HPV-containing cervical cancer cells.
    Preview · Article · Sep 2001 · Oncogene

Publication Stats

115 Citations
12.90 Total Impact Points

Top Journals


  • 2004
    • Wayne State University
      • Department of Pharmacology
      Detroit, Michigan, United States
  • 2001
    • University of Illinois at Chicago
      • Center for Molecular Biology of Oral Diseases
      Chicago, Illinois, United States