J H Keen

Thomas Jefferson University, Filadelfia, Pennsylvania, United States

Are you J H Keen?

Claim your profile

Publications (67)476.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Integrin engagement on lymphocytes initiates "outside-in" signaling that is required for cytoskeleton remodeling and the formation of the synaptic interface. However, the mechanism by which the "outside-in" signal contributes to receptor-mediated intracellular signaling that regulates the kinetics of granule delivery and efficiency of cytolytic activity is not well understood. We have found that variations in ICAM-1 expression on tumor cells influence killing kinetics of these cells by CD16.NK-92 cytolytic effectors suggesting that changes in integrin ligation on the effector cells regulate the kinetics of cytolytic activity by the effector cells. To understand how variations of the integrin receptor ligation may alter cytolytic activity of CD16.NK-92 cells, we analyzed molecular events at the contact area of these cells exposed to planar lipid bilayers that display integrin ligands at different densities and activating CD16-specific antibodies. Changes in the extent of integrin ligation on CD16.NK-92 cells at the cell/bilayer interface revealed that the integrin signal influences the size and the dynamics of activating receptor microclusters in a Pyk2-dependent manner. Integrin-mediated changes of the intracellular signaling significantly affected the kinetics of degranulation of CD16.NK-92 cells providing evidence that integrins regulate the rate of target cell destruction in antibody dependent cell cytotoxicity (ADCC). Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    No preview · Article · Mar 2015 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Hedgehog (Hh) receptor Patched-1 (PTCH1) opposes the activation of Gli transcription factors and induces cell death through a Gli-independent pathway. Here, we report that the C-terminal domain (CTD) of PTCH1 interacts with and is ubiquitylated on K1413 by the E3 ubiquitin-protein ligase Itchy homolog (Itch), a Nedd4 family member. Itch induces the ubiquitylation of K1413, the reduction of PTCH1 levels at the plasma membrane, and degradation, activating Gli transcriptional activity in the absence of Hh ligands. Silencing of Itch stabilizes PTCH1 and increases its level of retention at the plasma membrane. Itch is the preferential PTCH1 E3 ligase in the absence of Hh ligands, since of the other seven Nedd4 family members, only WW domain-containing protein 2 (WWP2) showed a minor redundant role. Like Itch depletion, mutation of the ubiquitylation site (K1314R) resulted in the accumulation of PTCH1 at the plasma membrane, prolongation of its half-life, and increased cell death by hyperactivation of caspase-9. Remarkably, Itch is the main determinant of PTCH1 stability under resting conditions but not in response to Sonic Hedgehog. In conclusion, our findings reveal that Itch is a key regulator of ligand-independent Gli activation and noncanonical Hh signaling by the governance of basal PTCH1 internalization and degradation.
    Full-text · Article · Aug 2014 · Molecular and Cellular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.
    Full-text · Article · May 2014 · Nature Communications
  • Source
    Yi Luo · Yi Zhan · James H. Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: ‘Gyrating-’ or ‘G’-clathrin are coated endocytic structures located near peripheral sorting endosomes (SEs), which exhibit highly dynamic but localized movements when visualized by live-cell microscopy. They have been implicated in recycling of transferrin from the sorting endosome directly to the cell surface, but there is no information about their formation or regulation. We show here that G-clathrin comprise a minority of clathrin-coated structures in the cell periphery and are brefeldin A (BFA)-resistant. Arf6-GTP substantially increases G-clathrin levels, probably by lengthening coated bud lifetimes as suggested by photobleaching and photoactivation results, and an Arf6(Q67L)-GTP mutant bearing an internal GFP tag can be directly visualized in G-clathrin structures in live cells. Upon siRNA-mediated depletion of Arf6 or expression of Arf6(T27N), G-clathrin levels rise and are primarily Arf1-dependent, yet still BFA-resistant. However, BFA-sensitive increased G-clathrin levels are observed upon acute incubation with cytohesin inhibitor SecinH3, indicating a shift in GEF usage. Depletion of both Arf6 and Arf1 abolishes G-clathrin, and results in partial inhibition of fast transferrin recycling consistent with the latter's participation in this pathway. Collectively, these results demonstrate that the dynamics of G-clathrin primarily requires completion of the Arf6 guanine nucleotide cycle, but can be regulated by multiple Arf and GEF proteins, reflecting both overlapping mechanisms operative in their regulation and the complexity of processes involved in endosomal sorting.
    Preview · Article · Jan 2013 · Traffic
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma ear-containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/hepatocyte growth factor RTK when stimulated, to sort it for recycling in association with "gyrating" clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met toward degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation, and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling.
    Full-text · Article · Jun 2011 · Developmental Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to rapidly and specifically regulate protein activity combined with in vivo functional assays and/or imaging can provide unique insight into underlying molecular processes. Here we describe the application of chemically induced dimerization of FKBP to create nearly instantaneous high-affinity bivalent ligands capable of sequestering cellular targets from their endogenous partners. We demonstrate the specificity and efficacy of these inducible, dimeric "traps" for the dynein light chains LC8 (Dynll1) and TcTex1 (Dynlt1). Both light chains can simultaneously bind at adjacent sites of dynein intermediate chain at the base of the dynein motor complex, yet their specific function with respect to the dynein motor or other interacting proteins has been difficult to dissect. Using these traps in cultured mammalian cells, we observed that induction of dimerization of either the LC8 or TcTex1 trap rapidly disrupted early endosomal and lysosomal organization. Dimerization of either trap also disrupted Golgi organization, but at a substantially slower rate. Using either trap, the time course for disruption of each organelle was similar, suggesting a common regulatory mechanism. However, despite the essential role of dynein in cell division, neither trap had a discernable effect on mitotic progression. Taken together, these studies suggest that LC occupancy of the dynein motor complex directly affects some, but not all, dynein-mediated processes. Although the described traps offer a method for rapid inhibition of dynein function, the design principle can be extended to other molecular complexes for in vivo studies.
    Full-text · Article · Feb 2010 · Proceedings of the National Academy of Sciences
  • Source
    Yanqiu Zhao · James H Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here detection of novel intracellular clathrin-coated structures revealed by continuous high-speed imaging of cells expressing green fluorescent protein fusion proteins. These structures, which we operationally term 'gyrating clathrin' (G-clathrin), are characterized by localized but extremely rapid movement, leading to the hypothesis that they are coated buds on waving membrane tubules. G-clathrin structures have structurally and functionally distinct features. They lack detectable adaptor proteins AP-1 and AP-2 but contain GGA1 [Golgi-localized, gamma-ear-containing, Arf (ADP-ribosylation factor)-binding protein] as well as the cation-dependent mannose-6-phosphate receptor. While they accumulate internalized transferrin (Tf), they do not contain detectable levels of cargos targeted for the late endosome/lysosome pathway such as EGF and dextran. Pulse-chase studies indicate that Tf appears in G-clathrin structures in the cell periphery after sorting endosomes (SEs), but before filling of the perinuclear endocytic recycling compartment. Furthermore, the inhibitors LY294002 and wortmannin, which inhibit direct recycling of Tf from SEs to the plasma membrane, also block its appearance in G-clathrin. These observations suggest that peripheral G-clathrin contributes to rapid recycling, a kinetically defined compartment that has largely eluded structural identification. More generally, the rapid continuous live cell imaging reported here reveals new aspects of membrane trafficking.
    Preview · Article · Oct 2008 · Traffic
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate-specific membrane antigen (PSMA) is an integral membrane glycoprotein expressed in prostatic epithelia and is being evaluated as a therapeutic target in prostate cancer. It undergoes constitutive receptor-mediated endocytosis via clathrin-coated pits, which is enhanced in the presence of monoclonal antibodies directed against it. We describe distinct interactions of PSMA with clathrin and the clathrin adaptor protein-2 (AP-2) complex, two components of clathrin-coated pits. The intracellular N-terminal domain of PSMA interacts with the N-terminal globular domain of clathrin heavy chain. Deletion analysis revealed an important determinant of this interaction residing within the proximal portion of the clathrin heavy chain N-terminal domain (amino acids 1-85) distinct from the clathrin binding sites of other known clathrin-binding proteins. Furthermore, PSMA interacts with the ear domain of alpha-adaptin (an AP-2 subunit), and a glutamic acid residue at position 7 in the cytoplasmic tail of PSMA is essential for this interaction. These data indicate that PSMA exhibits a high affinity, specific association with the clathrin-based endocytic machinery by distinct interactions with both clathrin and AP-2. Thus, although PSMA is a new member of the dual AP and clathrin binding proteins, its alpha-adaptin and clathrin heavy chain binding determinants are distinct from those of other members.
    Preview · Article · Dec 2007 · International Journal of Oncology
  • Source
    Yanqiu Zhao · Ibragim Gaidarov · James H Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) is a type II PI-3-kinase that has been implicated in several important membrane transport and signaling processes. We previously found that overexpression of PI3K-C2alpha inhibits clathrin-mediated membrane trafficking and induces proliferation of novel clathrin-coated structures within the cytoplasm. Using fluorescently tagged fusions of PI3K-C2alpha and clathrin, we explored the behavior of these structures in intact cells. Both proteins are present in the structures, and using rapid image acquisition and fluorescence photoactivation probes, we find that they exhibit localized, rapid mobility (5-20 microm/s). The movement is micro-tubule-based as revealed by use of inhibitors, and PI3K-C2alpha accumulates on microtubules rapidly and reversibly following cytoplasmic acidification, which also blocks movement. Dynactin mediates the movement of these clathrin-PI3K-C2alpha structures, since disruption of dynactin function by overexpression of its p50 subunit also inhibits movement. Finally, immunoprecipitation experiments reveal an interaction between endogenous PI3K-C2alpha and dynactin subunits. Together, these results reveal a molecular linkage between PI3K-C2alpha and the microtubule motor machinery, with implications for membrane trafficking in intact cells.
    Preview · Article · Feb 2007 · Journal of Biological Chemistry
  • Yanqiu Zhao · Ibragim Gaidarov · James H. Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase C2α (PI3K-C2α) is a type II PI-3-kinase that has been implicated in several important membrane transport and signaling processes. We previously found that overexpression of PI3K-C2α inhibits clathrin-mediated membrane trafficking and induces proliferation of novel clathrin-coated structures within the cytoplasm. Using fluorescently tagged fusions of PI3K-C2α and clathrin, we explored the behavior of these structures in intact cells. Both proteins are present in the structures, and using rapid image acquisition and fluorescence photoactivation probes, we find that they exhibit localized, rapid mobility (5–20 μm/s). The movement is micro-tubule-based as revealed by use of inhibitors, and PI3K-C2α accumulates on microtubules rapidly and reversibly following cytoplasmic acidification, which also blocks movement. Dynactin mediates the movement of these clathrin-PI3K-C2α structures, since disruption of dynactin function by overexpression of its p50 subunit also inhibits movement. Finally, immunoprecipitation experiments reveal an interaction between endogenous PI3K-C2α and dynactin subunits. Together, these results reveal a molecular linkage between PI3K-C2α and the microtubule motor machinery, with implications for membrane trafficking in intact cells.
    No preview · Article · Jan 2007 · Journal of Biological Chemistry
  • Source
    Anne K Warner · James H Keen · Yu-Li Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Remodeling of cell membranes takes place during motile processes such as cell migration and cell division. Defects of proteins involved in membrane dynamics, including clathrin and dynamin, disrupt cytokinesis. To understand the function of clathrin-containing structures (CCS) in cytokinesis, we have expressed a green fluorescent protein (GFP) fusion protein of clathrin light chain a (GFP-clathrin) in NRK epithelial cells and recorded images of dividing cells near the ventral surface with a spinning disk confocal microscope. Punctate GFP-CCS underwent dynamic appearance and disappearance throughout the ventral surface. Following anaphase onset, GFP-CCS between separated chromosomes migrated toward the equator and subsequently disappeared in the equatorial region. Movements outside separating chromosomes were mostly random, similar to what was observed in interphase cells. Directional movements toward the furrow were dependent on both actin filaments and microtubules, while the appearance/disappearance of CCS was dependent on actin filaments but not on microtubules. These results suggest that CCS are involved in remodeling the plasma membrane along the equator during cytokinesis. Clathrin-containing structures may also play a role in transporting signaling or structural components into the cleavage furrow.
    Preview · Article · Mar 2006 · Traffic
  • Ibragim Gaidarov · Yanqiu Zhao · James H Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase C2alpha (PI3K-C2alpha) is a member of the class II PI-3 kinases, defined by the presence of a second C2 domain at their C termini. The cellular functions of the class II enzymes are incompletely understood, though they have been implicated in receptor activation pathways initiated by epidermal growth factor, insulin, and chemokines. PI3K-C2alpha was recently found to be localized to clathrin-coated membranes in the trans-Golgi network and at endocytic sites on the plasma membrane. Further, a specific binding site was identified for clathrin on the N terminus of PI3K-C2alpha, whose occupancy resulted in lipid kinase activation. Expression of PI3K-C2alpha in cells dramatically affected clathrin distribution and function in cells, leading to accumulation of intracellular clathrin-coated structures, which are visualized here at the ultrastructural level, and inhibition of clathrin-mediated transport from both the plasma membrane and the trans-Golgi network. In this study we have demonstrated that the isolated clathrin binding domain of PI3K-C2alpha can drive clathrin lattice assembly and that both it and the lipid kinase activity of the protein can independently modulate clathrin distribution and function when expressed in cells. Together, these results suggest that PI3K-C2alpha employs both protein-protein interaction and localized production of 3-phosphoinositides to affect clathrin dynamics at sites of membrane budding and targeting.
    No preview · Article · Jan 2006 · Journal of Biological Chemistry
  • Source
    Ibragim Gaidarov · James H Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: Clathrin-mediated endocytosis is a process by which cell-surface proteins are selectively internalized into the cell. It is involved in a variety of biological processes, ranging from ubiquitous uptake of extracellular ligands (growth factors, hormones, and nutrients) to the specialized recycling of synaptic vesicles in nerve terminals (Conner and Schmid, 2003a). Two major structural components of coated pits on the plasma membrane are clathrin itself and an adaptor protein complex AP-2. Until recently, AP-2 was believed to be solely responsible for two major functions in endocytosis: mediating formation of clathrin lattices and selection of cargo proteins for internalization. However, recent studies have prompted the field to reevaluate our understanding of the role of AP-2 in both of these functions. First, it has been shown that clathrin assembly and endocytosis can occur to some extent in cells devoid of AP-2, suggesting that formation of functional clathrin coats on the plasma membranes can be mediated by other proteins (Motley et al., 2003 and Conner and Schmid, 2003b). Second, cargo selection is fulfilled by specialized adaptors (β-arrestin, epsin) in some cases. Nevertheless, AP-2 remains a major factor, responsible for the bulk of clathrin-coat assembly on the cell membrane and recruitment of multiple cargo proteins into the clathrin coat.
    Preview · Article · Jul 2005 · Developmental Cell

  • No preview · Article · Jun 2005 · Cell Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polarization and segregation of the T-cell receptor (TCR) and integrins upon productive cytotoxic T-lymphocyte (CTL) target cell encounters are well documented. Much less is known about the redistribution of major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule-1 (ICAM-1) proteins on target cells interacting with CTLs. Here we show that human leucocyte antigen-A2 (HLA-A2) MHC-I and ICAM-1 are physically associated and recovered from both the raft fraction and the fraction of soluble membranes of target cells. Conjugation of target cells with surrogate CTLs, i.e. polystyrene beads loaded with antibodies specific for HLA-A2 and ICAM-1, induced the accumulation of membrane rafts, and beads loaded with ICAM-1-specific antibodies caused the selective recruitment of HLA-A2 MHC-I at the contact area of the target cells. Disruption of raft integrity on target cells led to a release of HLA-A2 and ICAM-1 from the raft fraction, abatement of HLA-A2 polarization, and diminished the ability of target cells bearing viral peptides to induce a Ca(2+) flux in virus-specific CTLs. These data suggest that productive engagement of ICAM-1 on target cells facilitates the polarization of MHC-I at the CTL-target cell interface, augmenting presentation of cognate peptide-MHC (pMHC) complexes to CTLs. We propose that ICAM-1-MHC-I association on the cell membrane is a mechanism that enhances the linkage between antigen recognition and early immunological synapse formation.
    Full-text · Article · Jan 2005 · Immunology

  • No preview · Article · Jan 2005 · Biophysical Journal

  • No preview · Article · Jan 2004

  • No preview · Article · Jan 2004
  • Jeffrey L. Benovic · James H. Keen
    [Show abstract] [Hide abstract]
    ABSTRACT: Intercellular signaling has long been recognized to be initiated at the cell surface, and receptor clearance from the plasma membrane by internalization mechanisms has correspondingly been associated with termination of signaling. Recognition of the existence of multiple pathways for internalization as well as the complexity of intracellular itineraries that ligands and receptors can utilize clearly indicates that cellular signaling has not only temporal but also spatial properties. As ligand-receptor complexes proceed down theendocytic pathway, they encounter unique components and environments at both the cytoplasmic and lumenal interfaces. Relevant "geographical" effects are only recently beginning to come into focus, as potential intracellular sites of action are revealed. Several reviews of the interface between signaling and endocytosis that the reader may wish to consult have appeared; the focus of this chapter is on aspects of signaling following internalization of receptor tyrosine kinases (RTKs) and G-protein-coupled receptors (GPCRs).
    No preview · Chapter · Dec 2003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitination of the chemokine receptor CXCR4 serves as a targeting signal for lysosomal degradation, but the mechanisms mediating ubiquitination and lysosomal sorting remain poorly understood. Here we report that the Nedd4-like E3 ubiquitin ligase AIP4 mediates ubiquitination of CXCR4 at the plasma membrane, and of the ubiquitin binding protein Hrs on endosomes. CXCR4 activation promotes CXCR4 colocalization with AIP4 and Hrs within the same region of endosomes. Endosomal sorting of CXCR4 is dependent on Hrs as well as the AAA ATPase Vps4, the latter involved in regulating the ubiquitination status of both CXCR4 and Hrs. We propose a model whereby AIP4, Hrs, and Vps4 coordinate a cascade of ubiquitination and deubiquitination events that sort CXCR4 to the degradative pathway.
    Full-text · Article · Dec 2003 · Developmental Cell

Publication Stats

5k Citations
476.81 Total Impact Points

Institutions

  • 1992-2015
    • Thomas Jefferson University
      • • Department of Biochemistry and Molecular Biology
      • • Department of Microbiology & Immunology
      • • Division of Clinical Pharmacology
      Filadelfia, Pennsylvania, United States
    • Thomas Jefferson University Hospitals
      Philadelphia, Pennsylvania, United States
  • 1987-1993
    • Temple University
      • • Department of Anatomy and Cell Biology
      • • Department of Biochemistry
      • • Fels Institute for Cancer Research and Molecular Biology
      Filadelfia, Pennsylvania, United States
  • 1989
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 1987-1988
    • Washington University in St. Louis
      • Department of Cell Biology and Physiology
      Saint Louis, MO, United States