G Zhu

Albert Einstein College of Medicine, New York City, New York, United States

Are you G Zhu?

Claim your profile

Publications (2)5.19 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent neural progenitor cells become progressively more biased towards a glial fate during development coincident with an increase in expression of the epidermal growth factor receptor (EGFR). To determine whether differences in lineage commitment of neural progenitor cells from different stages are causally related to expression of the EGFR and whether generation of glia is EGFR-dependent, we used an EGFR-specific tyrosine kinase inhibitor, PD158780, to block the activation of EGFR in progenitor cells. Treatment of cultured neonatal progenitor cells with PD158780 completely blocked EGF-induced proliferation of the cells but did not affect bFGF-induced proliferation. Nevertheless, treatment with the inhibitor failed to inhibit the generation of astroglia in the presence of either EGF or bFGF. Treatment with bone morphogenetic protein-2 (BMP2) enhanced astroglial differentiation and suppressed oligodendroglial (OL) differentiation. PD158780 treatment had no effect on the BMP2-induced astroglial differentiation or OL suppression. These observations suggest that the generation of astroglia is not dependent on EGFR activation. Because it was still possible that the progenitor cell responses reflected a prior history of EGFR signaling, rat forebrain cells were cultured in the presence of PD158780 from a time (E12.5) preceding expression of the EGFR. After time in culture, the E12.5 cells expressed EGFR by Western analysis both in the presence and in the absence of PD158780, but activation of EGFR kinase (receptor autophosphorylation) was undetectable in the presence of PD158780 and the cells did not proliferate in response to EGF. Nevertheless, astroglial differentiation was normal in PD158780-treated cells both in the absence and in the presence of BMPs or CNTF. Furthermore, the propensity towards glial differentiation increased with time in culture even in the absence of EGFR signaling. This suggests that the increased bias towards glial differentiation during development does not depend on EGFR signaling.
    No preview · Article · Mar 2000 · Journal of Neuroscience Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multipotent progenitor cells have been identified within periventricular generative zones of the developing and adult brain. To determine whether the environmental responsiveness of these cells changes during development, progenitor cells were cultured from embryonic, postnatal, and adult rat brain in the presence of either basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF). Embryonic cells cultured as intact progenitor neurospheres proliferated more robustly in response to bFGF than to EGF, whereas proliferation of postnatal and adult progenitor cells was enhanced more by EGF than bFGF. Progenitor cells generated in the presence of either bFGF or EGF had the capacity to generate neurons, astrocytes, and oligodendrocytes at all developmental stages. Most embryonic and neonatal bFGF-generated cells differentiated predominantly into neurons, whereas late stage embryonic and neonatal EGF-generated progenitors largely remained in an undifferentiated state. However, later postnatal and adult progenitor species, irrespective of whether they were generated in the presence of bFGF or EGF, gave rise preferentially to astrocytes. Treatment with bone morphogenetic protein (BMP)2 or BMP7 enhanced astroglial differentiation and suppressed oligodendroglial differentiation of both EGF- and bFGF-generated progenitor species, suggesting that the effects of the BMPs are not dependent on EGF receptor activation. Thus, while central nervous system (CNS) progenitor cells retain multipotent capacity and responsiveness to the BMPs throughout development, they exhibit significant changes in other cellular response properties, perhaps reflecting differences in the requirements for specific generative versus regenerative events.
    No preview · Article · May 1999 · Journal of Neuroscience Research

Publication Stats

109 Citations
5.19 Total Impact Points


  • 1999-2000
    • Albert Einstein College of Medicine
      • Department of Neuroradiology
      New York City, New York, United States