Fang Chen

Chinese Academy of Sciences, Peping, Beijing, China

Are you Fang Chen?

Claim your profile

Publications (3)5.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although there are many reports about the efficacy of siRNAs, it is not clear whether those siRNAs with high C/G contents can be used to silence their target mRNAs efficiently. In this study, we investigated the structure and function of a group of siRNAs with high C/G contents. The results showed that single siRNAs against the Calpain, Otoferlin and Her2 mRNAs could induce different silencing effects on their targets, suggesting that the accessibility to target sequences influences the efficacy of siRNA. Unexpectedly, a single siRNA could target its cognate sequence in the 3'UTR of EEF1D or the 5'UTR of hTRF2 or CDC6. Their interaction induced different modes of gene silencing. Furthermore, the introduction of mutations into the 3' end of the passenger strand showed that the position and number of mutated nucleotides could exert some influence on the efficacy of siRNA. However, these mutations did not completely block the passenger strand from exerting its RNAi effect. Interestingly, our findings also indicated that the target mRNA might play essential roles in maintaining or discarding the guide strand in RISCs. Thus, the conclusion could be drawn that favorable siRNA sequences, accessible target structures and the fast cleavage mode are necessary and sufficient prerequisites for efficient RNAi.
    No preview · Article · Feb 2008 · Cellular & Molecular Biology Letters
  • Fang Chen · James Q. Yin
    [Show abstract] [Hide abstract]
    ABSTRACT: A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.
    No preview · Article · Jul 2005 · Chinese Science Bulletin
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: RNA interference technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Here our results showed that hdm2-siRNA silenced its target mRNA specifically and effectively in human breast cancer cells, reduced tumor cell proliferation and induced apoptotic cell death. Other molecular features modified by hdm2-siRNA included decreased Bcl-2, NF-kappaB, survivin, Ras and Raf levels, elevated p53, p21, BRCA1, Bax, and caspase levels as well as altered expression of other genes. hdm2-siRNA also caused cell cycle arrest at G1 phases with reduction in cyclin and Cdk proteins. In addition, hdm2-siRNA displayed in vivo antitumor activity and increased therapeutic effectiveness of mitomycin in MCF-7 xenografts. Thus, hdm2-siRNA may be a promising gene-specific drug for the treatment of human breast cancer and other tumors.
    Preview · Article · Dec 2004 · Cancer Gene Therapy