David Pellman

Howard Hughes Medical Institute, Ашбърн, Virginia, United States

Are you David Pellman?

Claim your profile

Publications (89)1433.33 Total impact

  • D J Gordon · M Motwani · D Pellman
    [Show abstract] [Hide abstract]
    ABSTRACT: Oncogenic transformation in Ewing sarcoma tumors is driven by the fusion oncogene EWS-FLI1. However, despite the well-established role of EWS-FLI1 in tumor initiation, the development of models of Ewing sarcoma in human cells with defined genetic elements has been challenging. Here, we report a novel approach to model the initiation of Ewing sarcoma tumorigenesis that exploits the developmental and pluripotent potential of human embryonic stem cells. The inducible expression of EWS-FLI1 in embryoid bodies, or collections of differentiating stem cells, generates cells with properties of Ewing sarcoma tumors, including characteristics of transformation. These cell lines exhibit anchorage-independent growth, a lack of contact inhibition and a strong Ewing sarcoma gene expression signature. Furthermore, these cells also demonstrate a requirement for the persistent expression of EWS-FLI1 for cell survival and growth, which is a hallmark of Ewing sarcoma tumors.Oncogene advance online publication, 12 October 2015; doi:10.1038/onc.2015.368.
    No preview · Article · Oct 2015 · Oncogene
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal rearrangements are generally thought to accumulate gradually over many generations. However, DNA sequencing of cancer and congenital disorders uncovered a new pattern in which multiple rearrangements arise all at once. The most striking example, chromothripsis, is characterized by tens or hundreds of rearrangements confined to a single chromosome or to local regions over a few chromosomes. Genomic analysis of chromothripsis and the search for its biological mechanism have led to new insights on how chromosome segregation errors can generate mutagenesis and changes to the karyotype. Here, we review the genomic features of chromothripsis and summarize recent progress on understanding its mechanism. This includes reviewing new work indicating that one mechanism to generate chromothripsis is through the physical isolation of chromosomes in abnormal nuclear structures (micronuclei). We also discuss connections revealed by recent genomic analysis of cancers between chromothripsis, chromosome bridges, and ring chromosomes. Expected final online publication date for the Annual Review of Genetics Volume 49 is November 23, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    No preview · Article · Oct 2015 · Annual Review of Genetics
  • Mijung Kwon · Maria Bagonis · Gaudenz Danuser · David Pellman
    [Show abstract] [Hide abstract]
    ABSTRACT: Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Jul 2015 · Developmental Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome sequencing has uncovered a new mutational phenomenon in cancer and congenital disorders called chromothripsis. Chromothripsis is characterized by extensive genomic rearrangements and an oscillating pattern of DNA copy number levels, all curiously restricted to one or a few chromosomes. The mechanism for chromothripsis is unknown, but we previously proposed that it could occur through the physical isolation of chromosomes in aberrant nuclear structures called micronuclei. Here, using a combination of live cell imaging and single-cell genome sequencing, we demonstrate that micronucleus formation can indeed generate a spectrum of genomic rearrangements, some of which recapitulate all known features of chromothripsis. These events are restricted to the mis-segregated chromosome and occur within one cell division. We demonstrate that the mechanism for chromothripsis can involve the fragmentation and subsequent reassembly of a single chromatid from a micronucleus. Collectively, these experiments establish a new mutational process of which chromothripsis is one extreme outcome.
    Full-text · Article · May 2015 · Nature
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polyploidy is observed across the tree of life, yet its influence on evolution remains incompletely understood. Polyploidy, usually whole-genome duplication, is proposed to alter the rate of evolutionary adaptation. This could occur through complex effects on the frequency or fitness of beneficial mutations. For example, in diverse cell types and organisms, immediately after a whole-genome duplication, newly formed polyploids missegregate chromosomes and undergo genetic instability. The instability following whole-genome duplications is thought to provide adaptive mutations in microorganisms and can promote tumorigenesis in mammalian cells. Polyploidy may also affect adaptation independently of beneficial mutations through ploidy-specific changes in cell physiology. Here we perform in vitro evolution experiments to test directly whether polyploidy can accelerate evolutionary adaptation. Compared with haploids and diploids, tetraploids undergo significantly faster adaptation. Mathematical modelling suggests that rapid adaptation of tetraploids is driven by higher rates of beneficial mutations with stronger fitness effects, which is supported by whole-genome sequencing and phenotypic analyses of evolved clones. Chromosome aneuploidy, concerted chromosome loss, and point mutations all provide large fitness gains. We identify several mutations whose beneficial effects are manifest specifically in the tetraploid strains. Together, these results provide direct quantitative evidence that in some environments polyploidy can accelerate evolutionary adaptation.
    No preview · Article · Mar 2015 · Nature
  • Source

    Full-text · Dataset · Oct 2014

  • No preview · Article · Oct 2014 · Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in 216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on 11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrich-ment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing. All the cell lines were screened using standardized conditions to best assess differential genetic dependencies across cell lines. When combined with genomic characterization of these cell lines, this dataset facilitates the linkage of genetic dependencies with specific cellular contexts (e.g., gene mutations or cell lineage). To enable such comparisons, we developed and provided a bioinformatics tool to identify linear and nonlinear correlations between these features.
    Full-text · Article · Sep 2014
  • Source
    Gianluca Varetti · David Pellman · David J Gordon
    [Show abstract] [Hide abstract]
    ABSTRACT: Aneuploidy, defined as an abnormal number of chromosomes, is a hallmark of cancer. Paradoxically, aneuploidy generally has a negative impact on cell growth and fitness in nontransformed cells. In this work, we review recent progress in identifying how aneuploidy leads to genomic and chromosomal instability, how cells can adapt to the deleterious effects of aneuploidy, and how aneuploidy contributes to tumorigenesis in different genetic contexts. Finally, we also discuss how aneuploidy might be a target for anticancer therapies.
    Preview · Article · Sep 2014 · Cold Spring Harbor perspectives in biology
  • SA Godinho · D Pellman
    [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also clear that the role of centrosome amplification in cancer is more complex than initially thought. Here, we review how centrosome abnormalities are generated in cancer and the mechanisms cells employ to adapt to centrosome amplification, in particular centrosome clustering. We discuss the different mechanisms by which centrosome amplification could contribute to tumour progression and the new advances in the development of therapies that target cells with extra centrosomes.
    No preview · Article · Sep 2014 · Philosophical Transactions of The Royal Society B Biological Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetically unstable tetraploid cells can promote tumorigenesis. Recent estimates suggest that ∼37% of human tumors have undergone a genome-doubling event during their development. This potentially oncogenic effect of tetraploidy is countered by a p53-dependent barrier to proliferation. However, the cellular defects and corresponding signaling pathways that trigger growth suppression in tetraploid cells are not known. Here, we combine RNAi screening and in vitro evolution approaches to demonstrate that cytokinesis failure activates the Hippo tumor suppressor pathway in cultured cells, as well as in naturally occurring tetraploid cells in vivo. Induction of the Hippo pathway is triggered in part by extra centrosomes, which alter small G protein signaling and activate LATS2 kinase. LATS2 in turn stabilizes p53 and inhibits the transcriptional regulators YAP and TAZ. These findings define an important tumor suppression mechanism and uncover adaptive mechanisms potentially available to nascent tumor cells that bypass this inhibitory regulation.
    No preview · Article · Aug 2014 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22 confers mouse progenitor B cell self renewal in vitro, maturation defects in vivo and B-ALL with either the BCR-ABL fusion protein or CRLF2 with activated JAK2. Chromosome 21q22 triplication suppresses histone H3 Lys27 trimethylation (H3K27me3) in progenitor B cells and B-ALLs, and 'bivalent' genes with both H3K27me3 and H3K4me3 at their promoters in wild-type progenitor B cells are preferentially overexpressed in triplicated cells. Human B-ALLs with polysomy 21 are distinguished by their overexpression of genes marked with H3K27me3 in multiple cell types. Overexpression of HMGN1, a nucleosome remodeling protein encoded on chromosome 21q22 (refs. 3,4,5), suppresses H3K27me3 and promotes both B cell proliferation in vitro and B-ALL in vivo.
    Full-text · Article · Apr 2014 · Nature Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome amplification has long been recognized as a feature of human tumours; however, its role in tumorigenesis remains unclear. Centrosome amplification is poorly tolerated by non-transformed cells and, in the absence of selection, extra centrosomes are spontaneously lost. Thus, the high frequency of centrosome amplification, particularly in more aggressive tumours, raises the possibility that extra centrosomes could, in some contexts, confer advantageous characteristics that promote tumour progression. Using a three-dimensional model system and other approaches to culture human mammary epithelial cells, we find that centrosome amplification triggers cell invasion. This invasive behaviour is similar to that induced by overexpression of the breast cancer oncogene ERBB2 (ref. 4) and indeed enhances invasiveness triggered by ERBB2. Our data indicate that, through increased centrosomal microtubule nucleation, centrosome amplification increases Rac1 activity, which disrupts normal cell-cell adhesion and promotes invasion. These findings demonstrate that centrosome amplification, a structural alteration of the cytoskeleton, can promote features of malignant transformation.
    Full-text · Article · Apr 2014 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Excluding 53BP1 from chromatin is required to attenuate the DNA damage response during mitosis, yet the functional relevance and regulation of this exclusion are unclear. Here we show that 53BP1 is phosphorylated during mitosis on two residues, T1609 and S1618, located in its well-conserved ubiquitination-dependent recruitment (UDR) motif. Phosphorylating these sites blocks the interaction of the UDR motif with mononuclesomes containing ubiquitinated histone H2A and impedes binding of 53BP1 to mitotic chromatin. Ectopic recruitment of 53BP1-T1609A/S1618A to mitotic DNA lesions was associated with significant mitotic defects that could be reversed by inhibiting nonhomologous end-joining. We also reveal that protein phosphatase complex PP4C/R3β dephosphorylates T1609 and S1618 to allow the recruitment of 53BP1 to chromatin in G1 phase. Our results identify key sites of 53BP1 phosphorylation during mitosis, identify the counteracting phosphatase complex that restores the potential for DDR during interphase, and establish the physiological importance of this regulation.
    Preview · Article · Apr 2014 · Molecular cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.
    Full-text · Article · Dec 2013 · Genes & development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of Cdc42 and its regulation during cytokinesis is not well understood. Using biochemical and imaging approaches in budding yeast, we demonstrate that Cdc42 activation peaks during the G1/S transition and during anaphase but drops during mitotic exit and cytokinesis. Cdc5/Polo kinase is an important upstream cell cycle regulator that suppresses Cdc42 activity. Failure to down-regulate Cdc42 during mitotic exit impairs the normal localization of key cytokinesis regulators-Iqg1 and Inn1-at the division site, and results in an abnormal septum. The effects of Cdc42 hyperactivation are largely mediated by the Cdc42 effector p21-activated kinase Ste20. Inhibition of Cdc42 and related Rho guanosine triphosphatases may be a general feature of cytokinesis in eukaryotes.
    Full-text · Article · Jul 2013 · The Journal of Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report an antiparallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule-destabilizing activity. In conjunction with Cin8, a kinesin-5 family member, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a slide-disassemble model where the sliding and destabilizing activity of Kip3 balance during pre-anaphase. This facilitates normal spindle assembly. However, the destabilizing activity of Kip3 dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.
    Full-text · Article · Jul 2013 · Nature Cell Biology
  • Source
    Neil J Ganem · David Pellman
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular defects that impair the fidelity of mitosis promote chromosome missegregation and aneuploidy. Increasing evidence reveals that errors in mitosis can also promote the direct and indirect acquisition of DNA damage and chromosome breaks. Consequently, deregulated cell division can devastate the integrity of the normal genome and unleash a variety of oncogenic stimuli that may promote transformation. Recent work has shed light on the mechanisms that link abnormal mitosis with the development of DNA damage, how cells respond to such affronts, and the potential impact on tumorigenesis.
    Full-text · Article · Dec 2012 · The Journal of Cell Biology
  • Xiaolei Su · Ryoma Ohi · David Pellman
    [Show abstract] [Hide abstract]
    ABSTRACT: The stereotypical function of kinesin superfamily motors is to transport cargo along microtubules. However, some kinesins also shape the microtubule track by regulating microtubule assembly and disassembly. Recent work has shown that the kinesin-8 family of motors emerge as key regulators of cellular microtubule length. The studied kinesin-8s are highly processive motors that walk towards the microtubule plus-end. Once at plus-ends, they have complex effects on polymer dynamics; kinesin-8s either destabilize or stabilize microtubules, depending on the context. This review focuses on the mechanisms underlying kinesin-8-microtubule interactions and microtubule length control. We compare and contrast kinesin-8s with the other major microtubule-regulating kinesins (kinesin-4 and kinesin-13), to survey the current understanding of the diverse ways that kinesins control microtubule dynamics.
    No preview · Article · Sep 2012 · Trends in cell biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Formin-family proteins promote the assembly of linear actin filaments and are required to generate cellular actin structures, such as actin stress fibers and the cytokinetic actomyosin contractile ring. Many formin proteins are regulated by an autoinhibition mechanism involving intramolecular binding of a Diaphanous inhibitory domain and a Diaphanous autoregulatory domain. However, the activation mechanism for these Diaphanous-related formins (DRFs) is not completely understood. Although small GTPases play an important role in relieving autoinhibition, other factors likely contribute. Here we describe a requirement for the septin Shs1 and the septin-associated kinase Gin4 for the localization and in vivo activity of the budding yeast DRF Bnr1. In budding yeast strains in which the other formin, Bni1, is conditionally inactivated, the loss of Gin4 or Shs1 results in the loss of actin cables and cell death, similar to the loss of Bnr1. The defects in these strains can be suppressed by constitutive activation of Bnr1. Gin4 is involved in both the localization and activation of Bnr1, whereas the septin Shs1 is required for Bnr1 activation but not its localization. Gin4 promotes the activity of Bnr1 independently of the Gin4 kinase activity, and Gin4 lacking its kinase domain binds to the critical localization region of Bnr1. These data reveal novel regulatory links between the actin and septin cytoskeletons.
    Preview · Article · Aug 2012 · Molecular biology of the cell

Publication Stats

8k Citations
1,433.33 Total Impact Points

Institutions

  • 2015
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
  • 2005-2015
    • Harvard University
      • Department of Molecular and Cell Biology
      Cambridge, Massachusetts, United States
  • 1999-2012
    • Dana-Farber Cancer Institute
      • Department of Pediatric Oncology
      Boston, Massachusetts, United States
    • Queen's University
      • Department of Biology
      Kingston, Ontario, Canada
  • 1997-2012
    • Harvard Medical School
      • • Department of Cell Biology
      • • Department of Biological Chemistry and Molecular Pharmacology
      • • Department of Pediatrics
      Boston, Massachusetts, United States
  • 2004-2006
    • Boston Children's Hospital
      Boston, Massachusetts, United States