D. Morrison

Cornell University, Итак, New York, United States

Are you D. Morrison?

Claim your profile

Publications (66)573.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GEM-era investigations of impact features on Europa have focused on: (1) the deposits of Mannann'an; (2) Tegid; (3) the topography of craters; (4) Pwyll secondaries; and (5) a survey and ordering of all primary impact features.
    Full-text · Conference Paper · May 2001
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the Galileo Europa Mission (GEM), impact features on Europa were observed with improved resolution and coverage was compared with Voyager or the Galileo nominal mission. We surveyed all primary impact features >4 km in diameter seen on Europa (through orbit E19). The transition from simple to complex crater morphology occurs at a diameter of about 5 km. We calculated the transient crater dimensions and excavation depths of all craters surveyed. The largest impact feature (Tyre) probably had a transient crater depth between 5 and 10 km and transported material to the surface from a depth of not greater than ∼4 km. Craters <30 km in diameter, such as Manannàn and Pwyll, formed within targets whose immediate subcrater materials exhibited nonfluid behavior on time scales of the impact event, and that are capable, especially in the case of Pwyll, of supporting significant local topographic loads such as a central peak. These craters are nevertheless quite shallow, with very subdued floors, and we suspect that Manannàn and Pwyll's small depth-to-diameter ratios are due to the isostatic adjustment of large-scale topography, facilitated by warm, plastically deformable ice at depth. Morphological similarities between Callanish and Tyre strongly imply that conclusions reached regarding Callanish in J. Moore et al. (1998, Icarus135, 127–145) also apply to Tyre, which was that Callanish is the consequence of impact into target materials that are mechanically very weak at depth. New evidence that Callanish's circumferential rings formed before the proximal ejecta became immobile implies a low-viscosity substrate at the time of impact. We also report additional evidence that a component of the proximal ejecta of Callanish was emplaced as a fluid. Our observations of Pwyll secondaries support the conclusions stated in Alpert and Melosh (1999) that impacts on icy bodies eject smaller fragments and that fragment size decreases more gradually as velocity increases than observed for impacts on silicate bodies at equivalent ejection velocities. Examination of Pwyll's secondary craters reveals azimuthal variations, with ejecta fragment sizes being larger near the center of a ray than off the ray. Our initial analysis of the characteristic size distribution of Pwyll's secondary craters shows that they form a differential slope slightly shallower than −4. Similar steep slopes for small craters on Ganymede imply that small craters there are mostly formed by secondary impact, and the jovian system may thus be deficient in small impacts relative to the environment of the terrestrial planets.
    Full-text · Article · May 2001 · Icarus
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 108 years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation–degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.
    No preview · Article · Aug 1999 · Icarus
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) “classic” impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ∼10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply that ∼10–15 km may have been the global average thickness of the rigid crust of Europa when these impacts occurred. The absence of detectable craters superposed on the interior deposits of Callanish suggests that it is geologically young (<108years). Hence, it seems likely that our preliminary conclusions about the subsurface structure of Europa apply to the current day.
    Full-text · Article · Feb 1998 · Icarus

  • No preview · Article · Jan 1998

  • No preview · Article · Jan 1998
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voyager images of the surface of Europa revealed several circular features identified to various degrees of certainty as impact features. The arrival of the Galileo Orbiter in the Jupiter system has offered an opportunity to examine several impact features on Europa at considerably better resolution and greater spectral coverage than was possible by Voyager. Utilizing these new data, the objectives of this study are to: (A) use impact features as probes into the crust of Europa, and (B) evaluate the role that varying target rheologies play in the resulting morphology of impact features. The Galileo survey has, to date, observed impact features on Europa that generally fall into the two categories first developed by Lucchitta and Soderblom. That is we observe impact features that; (A) grossly resemble "classic" impact craters (e.g., Pwyll), and (B) features which lack obvious continuous rims or central peaks, are very flat at the scale of the whole feature (though show some high frequency relief), and largely owe their identification as impact features to the field of secondaries radially splayed about them that we will refer to as "ringed maculae" (e.g., Tyre Macula). We will present the observations of "classic' impact craters first and then those of ringed maculae, going in order of increasing size and morphologic complexity. Our initial findings and conclusions are: (A) Ringed maculae are probably impact features that have morphologies that are the consequence of impacts into fluid-rich target materials; (B) The thickness of the brittle, strong bright upper layer of Europa's crust is substantially variable (at least between 1 and 3 km); (C) The rheology of the low albedo "red" layer excavated by impacts from 1 or more kilometers depth may sometimes be strong and brittle if the large massif on Pwyll's floor is a "classic" central peak (Material with the same spectral properties as the dark "red" layer is commonly seen elsewhere on Europa in association with endogenic landforms and fluid-rich deposits.); and (D) "Pedestal" ejecta facies may be produced by the down-slope movement of plastically deforming ice that is warm at the time of emplacement.
    Full-text · Article · Jun 1997
  • [Show abstract] [Hide abstract]
    ABSTRACT: The model presently considered for regolith evolution of surface albedo and color involves the relatively rapid brightening and whitening of a surface, as emplaced flows become fractured and pulverized by impactors. The target provides conduits into which the vapor due to impact can expand, potentially annealing grains of the deeper matrix and darkening and reddening the surface; the trapped impactor material may also directly pollute the target.
    No preview · Article · Jan 1997
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objectives of this study are determine the extent and morphologic expression of landforms and surface textures that are indicative of exogenic degradation in the icy Galilean satellites. We develop working hypotheses for the evolution of these landforms and surface materials and model the parameters of various hypotheses which can be tested against the body of available observations.
    No preview · Article · Jan 1997
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first images aof Jupiter,Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiter's Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominet linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localzed areas of relatively old surface. Pervasive birttle deformation on an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.
    No preview · Article · Oct 1996 · Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asteroids respond to impact stresses differently from either laboratory specimens or large planets. Gravity is typically so small that seismic disturbances of a few cm s−1can devastate unconsolidated topography. Yet the presence of regolith and the likelihood that many asteroids are gravitational assemblages tell us that gravity cannot generally be ignored. We use numerical models for impact fracture in solids to examine the initial stage of crater formation on asteroid 243 Ida, up to the cessation of fracture and the establishment of the cratering flow; at this stage we can infer final crater diameters but not profiles. We find that a modified strength scaling applies for craters up to a few 100 m in diameter forming in rock subject to Ida's gravity, and that gravity controls all craters larger than ∼1 km. “Bright annuli” around a number of intermediate craters may be the result of low-velocity surface disturbances, rather than bright proximal ejecta deposits. We also consider large impactors, to which Ida presents a curved, finite target surface with irregular gravity. These can excavate asymmetrical concavities. Stresses from large events can refocus and cause fracture far from the crater; using the shape of Ida as a basis for 3D hydrocode simulations, we show that impact genesis of the Vienna Regio concavity can cause fracture in Pola Regio, where grooves are observed in spacecraft images. Other simulations indicate that the formation of the ∼10 km crater Azzurra might have reopened these fractures, which may account for their fresh appearance. This mechanism of groove formation requires an interior which coherently transmits elastic stress. While this precludes a classic “rubble pile” asteroid, it does allow well-joined fault planes, and welded blocks or pores smaller than the stress pulse.
    No preview · Article · Mar 1996 · Icarus
  • [Show abstract] [Hide abstract]
    ABSTRACT: Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Stallites revises tables giving the directions of the north poles of rotation and the prime meridians of the planets, satellites, and asteroids. Also presented are revised tables giving their sizes and shapes.
    No preview · Article · May 1995 · Celestial Mechanics and Dynamical Astronomy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ∼1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body “ringing,” relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20–60 m), grooves (≥30 m), and shallowing of the largest degraded craters (20–50 m minimum, ∼100 m maximum) suggest a thickness of potentially mobile materials of ∼50 m, and a typical thickness for the debris layer of 50–100 m.
    Full-text · Article · Feb 1995 · Icarus
  • [Show abstract] [Hide abstract]
    ABSTRACT: The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56-kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (-3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida-and therefore for the Koronis family to which Ida belongs-is estimated at 1 billion years, older than expected.
    No preview · Article · Oct 1994 · Science
  • Source

    Full-text · Article · May 1994
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The second spacecraft encounter with an asteroid has yielded an unprecedentedly high resolution portrait of 243 Ida. On 28 Aug. 1993, Galileo obtained an extensive data set on this small member of the Koronis family. Most of the data recorded on the tape recorder will be returned to Earth in spring 1994. A five-frame mosaic of Ida was acquired with good illumination geometry a few minutes before closest approach; it has a resolution of 31 to 38 m/pixel amd was played back during Sept. 1993. Preliminary analyses of this single view of Ida are summarized.
    Full-text · Article · Feb 1994
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of grooves in Galileo high-resolution images of Gaspra. These features, previously seen only on Mars' satellite Phobos, are most likely related to severe impacts. Grooves on Gaspra occur as linear and pitted depressions, typically 100-200 m wide, 0.8 to 2.5 km long, and 10-20 m deep. Most occur in two major groups, one of which trends approximately parallel to the asteroid's long axis, but is offset by some 15 deg.; the other is approximately perpendicular to this trends. The first of extensive flat facets identified by Thomas et al., Icarus 107. The occurence of grooves on Gaspra is inconsistent with other indications (irregular shape, cratering record) that this asteroid has evolved through a violent collisional history. The bodywide congruence of major groove directions and other structural elements suggests that the present- day Gaspra is a globally coherent body.
    Full-text · Article · Jan 1994 · Icarus
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galileo flyby images of 951 Gaspra show a crater population dominated by fresh craters several hundreds meters in diameter and smaller. They must represent production population because their spatial density is low (few overlaps) and because degraded craters are underabundant; equilibrium may be attained at diameters near to or below the resolution limit of the best image. We have counted, measured, and classified craters from highest resolution, "high phase" image, which shows >600 craters in 90 km_2. The differential population index (0.2 - 0.6 km) for the fresh, obvious crater is very "steep" (-4.3 +- 0.3). It probably reflects the index of asteroidal projectiles; it is much steeper than the theoretical valueof -3.5 for collisional equilibrium. Gaspra's crater population differs from that observed on Phobos but resembles those observed on the Moon and Mars at these sizes (consistent also with the near-Earth asteroid population). Gaspra's fresh craters are superposed on a landscape that appears "smoothed" at a vertical scale of hundreds of meters. Some "soft", subdued crater-like features, commonly >500m across, are visible. Some of these are associated with the linea grooves on Gaspra and may be endogenic features. Many others are probably pre-existing impact craters deeply blanketed or otherwise much degraded. Gaspra's largest-scale shape is highly irregular, perhaps faceted. The biggest facet exceeds the largest crater (relative to body radius) ever observed on a satellite or expected from collisional fragmentation models. Facets cannot be successive crater-forming impacts; later scars would have destroyed earlier ones. Far-encounter images show a more lumpy that faceted visage of Gaspra; the two craters are 3 km in diameter, not even half the radius of Gaspra. We expect that Gaspra was created by collisional fragmentation of a larger parent body.
    Full-text · Article · Jan 1993
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galileo images of Gaspra reveal it to be an irregularly shaped object (19 by 12 by 11 kilometers) that appears to have been created by a catastrophic collisional disruption of a precursor parent body. The cratering age of the surface is about 200 million years. Subtle albedo and color variations appear to correlate with morphological features: Brighter materials are associated with craters especially along the crests of ridges, have a stronger 1-micrometer absorption, and may represent freshly excavated mafic materials; darker materials exhibiting a significantly weaker 1-micrometer absorption appear concentrated in interridge areas. One explanation of these patterns is that Gaspra is covered with a thin regolith and that some of this material has migrated downslope in some areas.
    No preview · Article · Oct 1992 · Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three images of Venus have been returned so far by the Galileo spacecraft following an encounter with the planet on UT February 10, 1990. The images, taken at effective wavelengths of 4200 and 9900 Å, characterize the global motions and distribution of haze near the Venus cloud tops and, at the latter wavelength, deep within the main cloud. Previously undetected markings are clearly seen in the near-infrared image. The global distribution of these features, which have maximum contrasts of 3%, is different from that recorded at short wavelengths. In particular, the “polar collar,” which is omnipresent in short wavelength images, is absent at 9900 Å. The maximum contrast in the features at 4200 Å is about 20%. The optical performance of the camera is described and is judged to be nominal.
    No preview · Article · Oct 1992 · Advances in Space Research

Publication Stats

4k Citations
573.48 Total Impact Points

Institutions

  • 1994
    • Cornell University
      • Department of Astronomy
      Итак, New York, United States
  • 1991
    • University of California, Berkeley
      Berkeley, California, United States
  • 1984-1989
    • University of Hawaiʻi at Mānoa
      • Institute of Astronomy
      Honolulu, Hawaii, United States
  • 1986
    • NASA
      Вашингтон, West Virginia, United States
  • 1979-1983
    • Honolulu University
      Honolulu, Hawaii, United States
  • 1978
    • The University of Arizona
      • Department of Planetary Sciences
      Tucson, Arizona, United States