D. Pollacco

The University of Warwick, Coventry, England, United Kingdom

Are you D. Pollacco?

Claim your profile

Publications (198)552.06 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV) variability. We present HARPS observations of sunlight scattered off the bright asteroid 4/Vesta, from which we deduced the Sun's activity-driven RV variations. In parallel, the HMI instrument onboard the Solar Dynamics Observatory provided us with simultaneous high spatial resolution magnetograms, Dopplergrams, and continuum images of the Sun in the Fe I 6173A line. We determine the RV modulation arising from the suppression of granular blueshift in magnetised regions and the flux imbalance induced by dark spots and bright faculae. The rms velocity amplitudes of these contributions are 2.40 m/s and 0.41 m/s, respectively, which confirms that the inhibition of convection is the dominant source of activity-induced RV variations at play, in accordance with previous studies. We find the Doppler imbalances of spot and plage regions to be only weakly anticorrelated. Lightcurves can thus only give incomplete predictions of convective blueshift suppression. We must instead seek proxies that track the plage coverage on the visible stellar hemisphere directly. The chromospheric flux index R'_HK derived from the HARPS spectra performs poorly in this respect, possibly because of the differences in limb brightening/darkening in the chromosphere and photosphere. We also find that the activity-driven RV variations of the Sun are strongly correlated with its full-disc magnetic flux density, which may become a useful proxy for activity-related RV noise.
    No preview · Article · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: We obtained high-speed photometry of the disintegrating planetesimals orbiting the white dwarf WD1145+017, spanning a period of four weeks. The light curves show a dramatic evolution of the system since the first observations obtained about seven months ago. Multiple transit events are detected in every light curve, which have varying durations(~3-12min) and depths (~10-60%). The shortest-duration transits require that the occulting cloud of debris has a few times the size of the white dwarf, longer events are often resolved into the superposition of several individual transits. The transits evolve on time scales of days, both in shape and in depth, with most of them gradually appearing and disappearing over the course of the observing campaign. Several transits can be tracked across multiple nights, all of them recur on periods of ~4.49h, indicating multiple planetary debris fragments on nearly identical orbits. Identifying the specific origin of these bodies within this planetary system, and the evolution leading to their current orbits remains a challenging problem.
    No preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are entering an era of unprecedented quantities of data from current and planned survey telescopes. To maximize the potential of such surveys, automated data analysis techniques are required. Here we implement a new methodology for variable star classification, through the combination of Kohonen Self-Organizing Maps (SOMs, an unsupervised machine learning algorithm) and the more common Random Forest (RF) supervised machine learning technique. We apply this method to data from the K2 mission fields 0–4, finding 154 ab-type RR Lyraes (10 newly discovered), 377 δ Scuti pulsators, 133 γ Doradus pulsators, 183 detached eclipsing binaries, 290 semidetached or contact eclipsing binaries and 9399 other periodic (mostly spot-modulated) sources, once class significance cuts are taken into account. We present light-curve features for all K2 stellar targets, including their three strongest detected frequencies, which can be used to study stellar rotation periods where the observed variability arises from spot modulation. The resulting catalogue of variable stars, classes, and associated data features are made available online. We publish our SOM code in python as part of the open source pymvpa package, which in combination with already available RF modules can be easily used to recreate the method.
    No preview · Article · Dec 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the entire HARPS observations of three stars that host planetary systems: HD1461, HD40307, and HD204313. The data set spans eight years and contains more than 200 nightly averaged velocity measurements for each star. This means that it is sensitive to both long-period and low-mass planets and also to the effects induced by stellar activity cycles. We modelled the data using Keplerian functions that correspond to planetary candidates and included the short- and long-term effects of magnetic activity. A Bayesian approach was taken both for the data modelling, which allowed us to include information from activity proxies such as $\log{(R'_{\rm HK})}$ in the velocity modelling, and for the model selection, which permitted determining the number of significant signals in the system. The Bayesian model comparison overcomes the limitations inherent to the traditional periodogram analysis. We report an additional super-Earth planet in the HD1461 system. Four out of the six planets previously reported for HD40307 are confirmed and characterised. We discuss the remaining two proposed signals. In particular, we show that when the systematic uncertainty associated with the techniques for estimating model probabilities are taken into account, the current data are not conclusive concerning the existence of the habitable-zone candidate HD40307 g. We also fully characterise the Neptune-mass planet that orbits HD204313 in 34.9 days.
    Full-text · Article · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: K2-19 is the second multiplanetary system discovered with K2 observations. The system is composed of two Neptune size planets close to the 3:2 mean-motion resonance. To better characterize the system we obtained two additional transit observations of K2-19b and five additional radial velocity observations. These were combined with K2 data and fitted simultaneously with the system dynamics (photodynamical model) which increases the precision of the transit time measurements. The higher transit time precision allows us to detect the chopping signal of the dynamic interaction of the planets that in turn permits to uniquely characterize the system. Although the reflex motion of the star was not detected, dynamic modelling of the system allowed us to derive planetary masses of Mb = 44 ± 12 M⊕ and Mc = 15.9 ± 7.0 M⊕ for the inner and the outer planets, respectively, leading to densities close to Uranus. We also show that our method allows the derivation of mass ratios using only the 80 d of observations during the first campaign of K2.
    Full-text · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery by the WASP-South survey of three planets transiting moderately bright stars (V ~ 11). WASP-120b is a massive (5.0MJup) planet in a 3.6-day orbit that we find likely to be eccentric (e = 0.059+0.025-0.018) around an F5 star. WASP-122b is a hot-Jupiter (1.37MJup, 1.79RJup) in a 1.7-day orbit about a G4 star. Our predicted transit depth variation cause by the atmosphere of WASP-122b suggests it is well suited to characterisation. WASP-123b is a hot-Jupiter (0.92MJup, 1.33RJup) in a 3.0-day orbit around an old (~ 7 Gyr) G5 star.
    No preview · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our aim is to precisely measure the physical parameters of the eclipsing binary IO Aqr and derive a distance to this system by applying a surface brightness - colour relation. Our motivation is to combine these parameters with future precise distance determinations from the GAIA space mission to derive precise surface brightness - colour relations for stars. We extensively used photometry from the Super-WASP and ASAS projects and precise radial velocities obtained from HARPS and CORALIE high-resolution spectra. We analysed light curves with the code JKTEBOP and radial velocity curves with the Wilson-Devinney program. We found that IO Aqr is a hierarchical triple system consisting of a double-lined short-period (P=2.37 d) spectroscopic binary and a low-luminosity and low-mass companion star orbiting the binary with a period of ~25000 d (~70 yr) on a very eccentric orbit. We derive high-precision (better than 1%) physical parameters of the inner binary, which is composed of two slightly evolved main-sequence stars (F5 V-IV + F6 V-IV) with masses of M1=1.569+/-0.004 and M2=1.655+/-0.004 M_sun and radii R1=2.19+/-0.02 and R2=2.49+/-0.02 R_sun. The companion is most probably a late K-type dwarf with mass ~0.6 M_sun. The distance to the system resulting from applying a (V-K) surface brightness - colour relation is 255+/-6(stat.)+/-6(sys.) pc, which agrees well with the Hipparcos value of 270+/-73 pc, but is more precise by a factor of eight.
    Full-text · Article · Aug 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here the detection of a system of four low-mass planets around the bright (V=5.5) and close-by (6.5 pc) star HD219134. This is the first result of the Rocky Planet Search program with HARPS-N on the TNG in La Palma. The inner planet orbits the star in 3.0937 +/-0.0004 days, on a quasi-circular orbit with a semi-major axis of 0.0382 +/- 0.0003 AU. Spitzer observations allowed us to detect the transit of the planet in front of the star making HD219134b the nearest known transiting planet to date. From the amplitude of the radial-velocity variation (2.33 +/- 0.24 m/s) and observed depth of the transit (359 +/- 38 ppm), the planet mass and radius are estimated to be 4.46 +/- 0.47 M_{\oplus} and 1.606 +/- 0.086 R_{\oplus} leading to a mean density of 5.89 +/- 1.17 g/cc, suggesting a rocky composition. One additional planet with minimum mass of 2.67 +/- 0.59 M_{\oplus} moves on a close-in, quasi-circular orbit with a period of 6.765 +/- 0.005 days. The third planet in the system has a period of 46.78 +/- 0.16 days and a minimum mass of 8.7 +/- 1.1 M{\oplus}, at 0.234 +/- 0.002 AU from the star. Its eccentricity is 0.32 +/- 0.14. The period of this planet is close to the rotational period of the star estimated from variations of activity indicators (42.3 +/- 0.1 days). The planetary origin of the signal is, however, the preferred solution as no indication of variation at the corresponding frequency is observed for activity-sensitive parameters. Finally, a fourth additional longer-period planet of mass of 62 +/- 6 M_{\oplus} orbits the star in 1190 days, on an eccentric orbit (e=0.27 +/- 0.11) at a distance of 2.14 +/- 0.27 AU.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery by the WASP-South survey, in close collaboration with the Euler and TRAPPIST telescopes, of WASP-121 b, a new remarkable short-period transiting hot Jupiter, whose planetary nature has been statistically validated by the PASTIS software. The planet has a mass of $1.183_{-0.062}^{+0.064}$ $M_{\mathrm{Jup}}$, a radius of 1.865 $\pm$ 0.044 $R_{\mathrm{Jup}}$, and transits every $1.2749255_{-0.0000025}^{+0.0000020}$ days an active F6-type main-sequence star ($V$=10.4, $1.353_{-0.079}^{+0.080}$ $M_{\odot}$, 1.458 $\pm$ 0.030 $R_{\odot}$, $T_{\mathrm{eff}}$ = 6460 $\pm$ 140 K). A notable property of WASP-121 b is that its orbital semi-major axis is only $\sim$1.15 times larger than its Roche limit, which suggests that the planet might be close to tidal disruption. Furthermore, its large size and extreme irradiation ($\sim$$7.1\:10^{9}$ erg $\mathrm{s}^{-1} \mathrm{cm}^{-2}$) make it an excellent target for atmospheric studies via secondary eclipse observations. Using the TRAPPIST telescope, we indeed detect its emission in the $z'$-band at better than $\sim$4$\sigma$, the measured occultation depth being 603 $\pm$ 130 ppm. Finally, from a measurement of the Rossiter-McLaughlin effect with the CORALIE spectrograph, we infer a sky-projected spin-orbit angle of $257.8_{-5.5}^{+5.3}$ deg. This result indicates a significant misalignment between the spin axis of the host star and the orbital plane of the planet, the planet being in a nearly polar orbit. Such a high misalignment suggests a migration of the planet involving strong dynamical events with a third body.
    Full-text · Article · Jun 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exoplanet science is now in its full expansion, particularly after the CoRoT and Kepler space missions that led us to the discovery of thousands of extra-solar planets. The last decade has taught us that UV observations play a major role in advancing our understanding of planets and of their host stars, but the necessary UV observations can be carried out only by HST, and this is going to be the case for many years to come. It is therefore crucial to build a treasury data archive of UV exoplanet observations formed by a dozen "golden systems" for which observations will be available from the UV to the infrared. Only in this way we will be able to fully exploit JWST observations for exoplanet science, one of the key JWST science case.
    Full-text · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of the transiting hot Jupiter exoplanet WASP-85Ab. Using a combined analysis of spectroscopic and photometric data, we determine that the planet orbits its host star every 2.66 days, and has a mass of 1.09+/-0.03 M_Jup and a radius of 1.44+/-0.02 R_Jup. The host star is of G5 spectral type, with magnitude V=11.2, and lies 125+/-80 pc distant. We find stellar parameters of T_eff=5685+/-65 K, super-solar metallicity ([Fe/H]=0.08+/-0.10), M_star=1.04+/-0.07 M_sun and R_star=0.96+/-0.13 R_sun. The system has a K-dwarf binary companion, WASP-85B, at a separation of approximately 1.5". The close proximity of this companion leads to contamination of our photometry, decreasing the apparent transit depth that we account for during our analysis. Without this correction, we find the depth to be 50 percent smaller, the stellar density to be 32 percent smaller, and the planet radius to be 18 percent smaller than the true value. Many of our radial velocity observations are also contaminated; these are disregarded when analysing the system in favour of the uncontaminated HARPS observations, as they have reduced semi-amplitudes that lead to underestimated planetary masses. We find a long-term trend in the binary position angle, indicating a misalignment between the binary and orbital planes. WASP observations of the system show variability with a period of 14.64 days, indicative of rotational modulation caused by stellar activity. Analysis of the Ca ii H+K lines shows strong emission that implies that both binary components are strongly active. We find that the system is likely to be less than a few Gyr old. WASP-85 lies in the field of view of K2 Campaign 1. Long cadence observations of the planet clearly show the planetary transits, along with the signature of stellar variability. Analysis of the K2 data, both long and short cadence, is ongoing.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exoplanet science is booming. In 20 years our knowledge has expanded considerably, from the first discovery of a Hot Jupiter, to the detection of a large population of Neptunes and super-Earths, to the first steps toward the characterization of exoplanet atmospheres. Between today and 2025, the field will evolve at an even faster pace with the advent of several space-based transit search missions, ground-based spectrographs, high-contrast imaging facilities, and the James Webb Space Telescope. Especially the ESA M-class PLATO mission will be a game changer in the field. From 2024 onwards, PLATO will find transiting terrestrial planets orbiting within the habitable zones of nearby, bright stars. These objects will require the power of Extremely Large Telescopes (ELTs) to be characterized further. The technique of ground-based high-resolution spectroscopy is establishing itself as a crucial pathway to measure chemical composition, atmospheric structure and atmospheric circulation in transiting exoplanets. A high-resolution spectrograph covering the visible and near-IR domains, mounted on the European ELT, will be able to detect molecules such as water vapour, carbon dioxide and oxygen in the atmospheres of habitable planets under favourable circumstances. E-ELT HiRES is the perfect ground-based match to the PLATO space mission and represents a unique opportunity for Europe to lead the world into the era of exploration of exoplanets with habitable conditions. HiRES will also be extremely complementary to other E-ELT planned instruments specialising in different kinds of planets, such as METIS and EPICS.
    Full-text · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of three new transiting hot Jupiters by WASP-South together with the TRAPPIST photometer and the Euler/CORALIE spectrograph. WASP-74b orbits a star of V = 9.7, making it one of the brighter systems accessible to Southern telescopes. It is a 0.95 M_Jup planet with a moderately bloated radius of 1.5 R_Jup in a 2-d orbit around a slightly evolved F9 star. WASP-83b is a Saturn-mass planet at 0.3 M_Jup with a radius of 1.0 R_Jup. It is in a 5-d orbit around a fainter (V = 12.9) G8 star. WASP-89b is a 6 M_Jup planet in a 3-d orbit with an eccentricity of e = 0.2. It is thus similar to massive, eccentric planets such as XO-3b and HAT-P-2b, except that those planets orbit F stars whereas WASP-89 is a K star. The V = 13.1 host star is magnetically active, showing a rotation period of 20.2 d, while star spots are visible in the transits. There are indications that the planet's orbit is aligned with the stellar spin. WASP-89 is a good target for an extensive study of transits of star spots.
    Full-text · Article · Oct 2014 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a pilot study of a novel observing technique, defocused transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocused photometry, defocused transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, point spread function variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12 ± 0.03[+0.03] per cent during transit using a 2 Å wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15 per cent. This is a similar level of absorption reported in the atmosphere of HD 209458b (0.135 ± 0.017 per cent; Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.
    Preview · Article · Oct 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discoveries of six transiting hot Jupiters: WASP-87b, WASP-108b, WASP-109b, WASP-110b, WASP-111b and WASP-112b. The planets have masses of 0.51--2.2 $M_{\rm Jup}$ and radii of 1.19--1.44 $R_{\rm Jup}$ and are in orbits of 1.68--3.78 d around stars with masses 0.81--1.50 $M_{\rm \odot}$. WASP-111b is in a prograde, near-aligned ($\lambda = -5 \pm 16^\circ$), near-circular ($e < 0.10$ at 2 $\sigma$) orbit around a mid-F star. As tidal alignment around such a hot star is thought to be inefficient, this suggests that either the planet migrated inwards through the protoplanetary disc or that scattering processes happened to leave it in a near-aligned orbit. WASP-111 appears to have transitioned from an active to a quiescent state between the 2012 and 2013 seasons, which makes the system a candidate for studying the effects of variable activity on a hot-Jupiter atmosphere. We find evidence that the mid-F star WASP-87 is a visual binary with a mid-G star. Two host stars are metal poor: WASP-112 has [Fe/H] = $-0.64 \pm 0.15$ and WASP-87 has [Fe/H] = $-0.41 \pm 0.10$. The low density of WASP-112 (0.81 $M_{\rm \odot}$, $0.80 \pm 0.04$ $\rho_{\rm \odot}$) cannot be matched by standard models for any reasonable value of the age of the star, suggesting it to be affected by the "radius anomaly".
    Full-text · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PLATO 2.0 is a mission candidate for ESA's M3 launch opportunity (2022/24). It addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, able to develop life? The PLATO 2.0 instrument consists of 34 small aperture telescopes providing a wide field-of-view and a large photometric magnitude range. It targets bright stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for stars <=11mag to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2%, 4-10% and 10% for planet radii, masses and ages, respectively. The foreseen baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50% of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include Earth-like planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. ...
    Full-text · Article · Oct 2014 · Experimental Astronomy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of two hot-Jupiter planets, each orbiting one of the stars of a wide binary system. WASP-94A (2MASS 20550794-3408079) is an F8 type star hosting a transiting planet with a radius of 1.72 +/- 0.06 R_Jup, a mass of 0.445 +/- 0.026 M_Jup, and an orbital period of 3.95 days. The Rossiter-McLaughlin effect is clearly detected, and the measured projected spin-orbit angle indicates that the planet occupies a retrograde orbit. WASP-94B (2MASS 20550915-3408078) is an F9 stellar companion at an angular separation of 15" (projected separation 2700 au), hosting a gas giant with a minimum mass of 0.617 +/- 0.028 M_Jup with a period of 2.008 days, detected by Doppler measurements. The orbital planes of the two planets are inclined relative to each other, indicating that at least one of them is inclined relative to the plane of the stellar binary. These hot Jupiters in a binary system bring new insights into the formation of close-in giant planets and the role of stellar multiplicity.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the sky-projected orbital obliquity (spin-orbit angle) of WASP-84b, a 0.70-$M_{\rm Jup}$ planet in a 8.52-day orbit around a G9V/K0V star, to be $\lambda = 0.3 \pm 1.7^\circ$. We obtain a true obliquity of $\psi = 14.8 \pm 8.0^\circ$ from a measurement of the inclination of the stellar spin axis with respect to the sky plane. Due to the young age and the weak tidal forcing of the system, we suggest that the orbit of WASP-84b is unlikely to have both realigned and circularised from the misaligned and/or eccentric orbit likely to have arisen from high-eccentricity migration. Therefore we conclude that the planet probably migrated via interaction with the protoplanetary disc. This would make it the first short-orbit, giant planet to have been shown to have migrated via this pathway. Further, we argue that the distribution of obliquities for planets orbiting cool stars ($T_{\rm eff}$ < 6250 K) suggests that high-eccentricity migration is an important pathway for the formation of short-orbit, giant planets.
    Full-text · Article · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the characterization of the Kepler-101 planetary system, thanks to a combined DE-MCMC analysis of Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated by Rowe et al. (2014) and is composed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolved and metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass $M_{\rm p}=51.1_{-4.7}^{+5.1}~M_{\oplus}$, radius $R_{\rm p}=5.77_{-0.79}^{+0.85}~R_{\oplus}$, and density $\rho_{\rm p}=1.45_{-0.48}^{+0.83} \rm g\;cm^{-3}$, Kepler-101b is the first fully-characterized super-Neptune, and its density suggests that heavy elements make up a significant fraction of its interior; more than $60\%$ of its total mass. Kepler-101c has a radius of $1.25_{-0.17}^{+0.19}~R_{\oplus}$, which implies the absence of any H/He envelope, but its mass could not be determined due to the relative faintness of the parent star for highly precise radial-velocity measurements ($K_{\rm p}=13.8$) and the limited number of radial velocities. The $1~\sigma$ upper limit, $M_{\rm p} < 3.8~M_{\oplus}$, excludes a pure iron composition with a $68.3\%$ probability. The architecture of the Kepler-101 planetary system - containing a close-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance - is certainly of interest for planet formation and evolution scenarios. This system does not follow the trend, seen by Ciardi et al. (2013), that in the majority of Kepler systems of planet pairs with at least one Neptune-size or larger planet, the larger planet has the longer period.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery from the WASP survey of two exoplanetary systems, each consisting of a Jupiter-sized planet transiting an 11th magnitude (V) main-sequence star. WASP-104b orbits its star in 1.75 d, whereas WASP-106b has the fourth-longest orbital period of any planet discovered by means of transits observed from the ground, orbiting every 9.29 d. Each planet is more massive than Jupiter (WASP-104b has a mass of $1.27 \pm 0.05~\mathrm{M_{Jup}}$, while WASP-106b has a mass of $1.93 \pm 0.08~\mathrm{M_{Jup}}$). Both planets are just slightly larger than Jupiter, with radii of $1.14 \pm 0.04$ and $1.09 \pm 0.04~\mathrm{R_{Jup}}$ for WASP-104 and WASP-106 respectively. No significant orbital eccentricity is detected in either system, and while this is not surprising in the case of the short-period WASP-104b, it is interesting in the case of WASP-106b, because many otherwise similar planets are known to have eccentric orbits.
    Full-text · Article · Aug 2014 · Astronomy and Astrophysics

Publication Stats

3k Citations
552.06 Total Impact Points

Institutions

  • 2012-2015
    • The University of Warwick
      • Department of Physics
      Coventry, England, United Kingdom
  • 2010-2013
    • Queens University of Charlotte
      New York, United States
    • University of Geneva
      • Department of Astronomy
      Genève, Geneva, Switzerland
  • 2000-2013
    • Queen's University Belfast
      • • Astrophysics Research Centre (ARC)
      • • School of Mathematics and Physics
      Béal Feirste, N Ireland, United Kingdom
  • 2010-2012
    • The University of Manchester
      • Jodrell Bank Centre for Astrophysics
      Manchester, England, United Kingdom