Ch. Wang

Chinese Academy of Sciences, Peping, Beijing, China

Are you Ch. Wang?

Claim your profile

Publications (2)9.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Two segments of plasmas with different densities, which are operated as the electron injector and accelerator, respectively, are designed to realize a cascaded laser wakefield accelerator. Particle-in-cell simulations indicate that the further acceleration of the electrons in the second uniform-density plasma relies on the injection and acceleration in the first stage. It is found that electrons trapped in the second wakefield period in the first stage can be seeded into the next stage with an optimized phase for efficient acceleration and reducing in the relative energy spread. And finally a 700 MeV electron beam with a relative rms energy spread about 0.6% and the normalized transverse emittance of 1.4π mm mrad was obtained after a 5.5-mm-long acceleration in a dark-current free cascaded laser wakefield accelerator. Our results demonstrate that, for a given laser energy, choices in laser and plasma parameters strongly affect the output electron beam energy and quality, and that all of these parameters can be controlled.
    No preview · Article · Feb 2012 · Physics of Plasmas
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on near-GeV electron beam generation from an all-optical cascaded laser wakefield accelerator (LWFA). Electron injection and acceleration are successfully separated and controlled in different LWFA stages by employing two gas cells filled with a He/O2 mixture and pure He gas, respectively. Electrons with a Maxwellian spectrum, generated from the first LWFA assisted by ionization-induced injection, were seeded into the second LWFA with a 3-mm-thick gas cell and accelerated to be a 0.8-GeV quasimonoenergetic electron beam, corresponding to an acceleration gradient of 187  GV/m. The demonstrated scheme paves the way towards the multi-GeV laser accelerators.
    Full-text · Article · Jul 2011 · Physical Review Letters