Bin Xue

University of South Florida, Tampa, Florida, United States

Are you Bin Xue?

Claim your profile

Publications (24)59.6 Total impact

  • Jia Yuan · Bin Xue
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerin is a short inner nuclear membrane protein with an LEM-domain at the N-terminal end and a transmembrane domain at the C-terminal end. The middle region of human emerin contains multiple binding motifs. Since emerin is often found in evolutionarily newer species, the functional conservation of emerin becomes an interesting topic. In this study, we have demonstrated that most of the functional motifs of emerin are intrinsically disordered or highly flexible. Many post translational modification sites and mutation sites are associated with these disordered regions. The averaged substitution rates of most functional motifs between species correlate positively with the averaged disorder scores of those functional motifs. Human emerin sequence may have acquired new functions on protein-protein interaction through the formation of hydrophobic motifs in the middle region, which is resulted from accumulated mutations during the evolution process. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Aug 2015 · Journal of Theoretical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational methods are prevailing in identifying protein intrinsic disorder. The results from predictors are often given as per-residue disorder scores. The scores describe the disorder propensity of amino acids of a protein and can be further represented as a disorder curve. Many proteins share similar patterns in their disorder curves. The similar patterns are often associated with similar functions and evolutionary origins. Therefore, finding and characterizing specific patterns of disorder curves provides a unique and attractive perspective of studying the function of intrinsically disordered proteins. In this study, we developed a new computational tool named IDalign using dynamic programming. This tool is able to identify similar patterns among disorder curves, as well as to present the distribution of intrinsic disorder in query proteins. The disorder-based information generated by IDalign is significantly different from the information retrieved from classical sequence alignments. This tool can also be used to infer functions of disordered regions and disordered proteins. The web server of IDalign is available at (http://labs.cas.usf.edu/bioinfo/service.html).
    Preview · Article · Jun 2015 · International Journal of Molecular Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This article opens a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. The focus of this introductory article on caseins is symbolic, since caseins were among the first recognized functional unfolded proteins and since they are definitely the most disordered, the most abundant, and the most studied of all milk proteins. In eutherian milks, the casein family includes at least three and usually four major members (αs1-, αs2-, β-, and κ-caseins) that are unrelated in sequence. However, in some species, two different αS2-casein genes are active, and therefore the total number of caseins can be as high as five. These proteins have found a number of uses in food industry. The functional repertoire of caseins ranges from nutritional function to involvement in the improving and/or maintaining cardiovascular health, to crucial contribution to the milk capacity to transport calcium phosphate, to serve as molecular chaperones, and to protect the mother's mammary gland against amyloidoses and ectopic calcification. An intricate feature of caseins is their ability to assemble to colloidal protein particles, casein micelles, serving to sequester and transport amorphous calcium phosphate. These and many other functions of caseins are obviously dependent on their intrinsically disordered nature and are controlled by various posttranslational modifications. Since various aspects of casein structure and function are rather well studied and since several recent reviews emphasized the functional roles of caseins' intrinsic disorder, the major goal of this article is to show how intrinsic disorder is encoded in the amino acid sequences of these proteins.
    Full-text · Article · Feb 2015 · Current Protein and Peptide Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viral proteins bind to numerous cellular and viral proteins throughout the infection cycle. However, the mechanisms by which viral proteins interact with such large numbers of factors remain unknown. Cellular proteins that interact with multiple, distinct partners often do so through short sequences known as Molecular Recognition Features (MoRFs) embedded within intrinsically disordered regions (IDRs). Here, we report the first evidence that MoRFs in viral proteins play a similar role in targeting the host cell. Using a combination of evolutionary modeling, protein-protein interaction analyses and forward genetic screening, we systematically investigated two computationally predicted MoRFs within the N-terminal IDR of the hepatitis C virus (HCV) Core protein. Sequence analysis of the MoRFs revealed their conservation across all HCV genotypes and the canine and equine Hepaciviruses. Phylogenetic modeling indicated that the Core MoRFs are under stronger purifying selection than the surrounding sequence, suggesting that these modules have a biological function. Using the yeast two-hybrid assay, we identified three cellular binding partners for each HCV Core MoRF, including two previously characterized cellular targets of HCV Core (DDX3X and NPM1). Random and site-directed mutagenesis demonstrated that the predicted MoRF regions were required for binding to the cellular proteins, but that different residues within each MoRF were critical for binding to different partners. This study demonstrated that viruses may use intrinsic disorder to target multiple cellular proteins with the same amino acid sequence and provides a framework for characterizing the binding partners of other disordered regions in viral and cellular proteomes. This article is protected by copyright. All rights reserved. © 2014 The Protein Society.
    Full-text · Article · Feb 2015 · Protein Science

  • No preview · Article · Jan 2015 · Biophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deleted in breast cancer 1 (DBC1, CCAR2, KIAA1967) is a large, predominantly nuclear, multidomain protein that modulates gene expression by inhibiting several epigenetic modifiers, including the deacetylases SIRT1 and HDAC3, and the methyltransferase SUV39H1. DBC1 shares many highly conserved protein domains with its paralog cell cycle and apoptosis regulator 1 (CCAR1, CARP-1). In this study, we examined the full-length sequential and structural properties of DBC1 and CCAR1 from multiple species and correlated these properties with evolution. Our data shows that the conserved domains shared between DBC1 and CCAR1 have similar domain structures, as well as similar patterns of predicted disorder in less-conserved intrinsically disordered regions. Our analysis indicates similarities between DBC1, CCAR1, and the nematode protein lateral signaling target 3 (LST-3), suggesting that DBC1 and CCAR1 may have evolved from LST-3. Our data also suggests that DBC1 emerged later in evolution than CCAR1. DBC1 contains regions that show less conservation across species as compared to the same regions in CCAR1, suggesting a continuously evolving scenario for DBC1. Overall, this study provides insight into the structure and evolution of DBC1 and CCAR1, which may impact future studies on the biological functions of these proteins.
    Preview · Article · Dec 2014 · BioMed Research International
  • Bin Xue · Vladimir N Uversky
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation is a common post-translational modification that plays important roles in a wide range of biochemical and cellular processes. Many enzymes and receptors can be switched “on” or “off” by conformational changes induced by phosphorylation. The phosphorylation process is mediated by a family of enzymes called kinase. Currently, more than 1,000 different kinases have been identified in Arabidopsis thaliana proteome. Kinases interact with each other and with many regulatory proteins forming phosphorylation networks. These phosphorylation networks modulate the signaling processes and control the functions of cells. Normally, kinases phosphorylate serines, threonines, and tyrosines. However, in many proteins, not all of these 3 types of amino acids can be phosphorylated. Therefore, identifying the phosphorylation sites and the possible phosphorylation events is very important in decoding the processes of regulation and the function of phosphorylation networks. In this study, we applied computational and bioinformatics tools to characterize the association between phosphorylation events and structural properties of corresponding proteins by analyzing more than 50 trans-membrane proteins from Arabidopsis thaliana. In addition to the previously established conclusion that phosphorylation sites are closely associated with intrinsic disorder, we found that the phosphorylation process may also be affected by solvent accessibility of phosphorylation sites and further promoted by neighboring modification events.
    No preview · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since aberrant cell signaling pathways underlie majority of pathophysiological morbidities, kinase inhibitors are routinely used for pharmacotherapy. However, most kinase inhibitors suffer from adverse off-target effects. Inhibition of one kinase in a pathogenic signaling pathway elicits multiple compensatory feedback signaling loops, reinforcing the pathway rather than inhibiting it, leading to chemoresistance. Thus, development of novel computational strategies providing predictive evidence to inhibit a specific set of kinases to mitigate an aberrant signaling pathway with minimum side-effects is imperative. First, our analyses reveal that many kinases contain intrinsically disordered regions, which may participate in facilitating protein-protein interactions at the kinome level. Second, we employ a kinome-wide approach to identify intrinsic disorder and streamline a methodology that adds to the knowledge of therapeutically targeting kinase cascades to treat diseases. Furthermore, we find that within the kinome network, some kinases with intrinsically disordered regions have a high topological score, likely acting as kinome modulators. Third, using network analysis, we demonstrate that 5 kinases emerge as topologically most significant, forming kinome sub-networks, comprising of other kinases and transcription factors that are known to serve as drivers of disease pathogenesis. To support these findings, we have biologically validated the interplay between kinome modulators SRC and AKT kinases and uncovered their novel function in regulating transcription factors of the SMAD family. Taken together, we identify novel kinome modulators driven by intrinsic disorder, and biologically validate the thesis that therapeutic disruption of the function of kinome modulators engaged in regulatory cross-talk between disparate pathways can lead to reduced oncogenic potential in cancer cells.
    Full-text · Article · Aug 2014 · Molecular BioSystems
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana (At) RPM1-interacting protein 4 (RIN4), targeted by many defence-suppressing bacterial type III effectors and monitored by several resistance proteins, regulates plant immune responses to pathogen-associated molecular patterns and type III effectors. Little is known about the overall protein structure of AtRIN4, especially in its unbound form, and the relevance of structure to its diverse biological functions. AtRIN4 contains two nitrate-induced (NOI) domains and is a member of the NOI family. Using experimental and bioinformatic approaches, we demonstrate that the unbound AtRIN4 is intrinsically disordered under physiological conditions. The intrinsically disordered polypeptide chain of AtRIN4 is interspersed with molecular recognition features (MoRFs) and ANCHOR-identified long-binding regions, potentially allowing it to undergo disorder-to-order transitions upon binding to partner(s). A poly-L-proline II structure, often responsible for protein recognition, is also identified in AtRIN4. By performing bioinformatics analyses on RIN4 homologues from different plant species and the NOI proteins from Arabidopsis, we infer the conservation of intrinsic disorder, MoRFs and long-binding regions of AtRIN4 in other plant species and the NOI family. Intrinsic disorder and MoRFs could provide RIN4 proteins with the binding promiscuity and plasticity required to act as hubs in a pivotal position within plant defence signalling cascades.
    No preview · Article · Jul 2014 · FEBS Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent years witnessed increased interest in intrinsically disordered proteins and regions. These proteins and regions are abundant and possess unique structural features and a broad functional repertoire that complements ordered proteins. However, modern studies on the abundance and functions of intrinsically disordered proteins and regions are relatively limited in size and scope of their analysis. To fill this gap, we performed a broad and detailed computational analysis of over 6 million proteins from 59 archaea, 471 bacterial, 110 eukaryotic and 325 viral proteomes. We used arguably more accurate consensus-based disorder predictions, and for the first time comprehensively characterized intrinsic disorder at proteomic and protein levels from all significant perspectives, including abundance, cellular localization, functional roles, evolution, and impact on structural coverage. We show that intrinsic disorder is more abundant and has a unique profile in eukaryotes. We map disorder into archaea, bacterial and eukaryotic cells, and demonstrate that it is preferentially located in some cellular compartments. Functional analysis that considers over 1,200 annotations shows that certain functions are exclusively implemented by intrinsically disordered proteins and regions, and that some of them are specific to certain domains of life. We reveal that disordered regions are often targets for various post-translational modifications, but primarily in the eukaryotes and viruses. Using a phylogenetic tree for 14 eukaryotic and 112 bacterial species, we analyzed relations between disorder, sequence conservation and evolutionary speed. We provide a complete analysis that clearly shows that intrinsic disorder is exceptionally and uniquely abundant in each domain of life.
    Full-text · Article · Jun 2014 · Cellular and Molecular Life Sciences CMLS
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IDPs function without relying on three-dimensional structures. No clear rationale for such a behavior is available yet. PreSMos are transient secondary structures observed in the target-free IDPs and serve as the target-binding "active" motifs in IDPs. Prolines are frequently found in the flanking regions of PreSMos. Contribution of prolines to the conformational stability of the helical PreSMos in IDPs is investigated. MD simulations are performed for several IDP segments containing a helical PreSMo and the flanking prolines. To measure the influence of flanking-prolines on the structural content of a helical PreSMo calculations were done for wild type as well as for mutant segments with Pro■Asp, His, Lys, or Ala. The change in the helicity due to removal of a proline was measured both for the PreSMo region and for the flanking regions. The α-helical content in ~70% of the helical PreSMos at the early stage of simulation decreases due to replacement of an N-terminal flanking proline by other residues whereas the helix content in nearly all PreSMos increases when the same replacements occur at the C-terminal flanking region. The helix destabilizing/terminating role of the C-terminal flanking prolines is more pronounced than the helix promoting effect of the N-terminal flanking prolines. General Significance This work represents a novel example demonstrating that a proline is encoded in an IDP with a defined purpose. The helical PreSMos presage their target-bound conformations. As they most likely mediate IDP-target binding via conformational selection their helical content can be an important feature for IDP function.
    Full-text · Article · Nov 2013 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identifying local conformational changes induced by subtle differences on amino acid sequences is critical in exploring the functional variations of the proteins. In this study, we designed a computational scheme to predict the dihedral angle variations for different amino acid sequences by using conditional random field. This computational tool achieved an accuracy of 87% and 84% in 10-fold cross validation in a large data set for φ and Ψ, respectively. The prediction accuracies of φ and Ψ are positively correlated to each other for most of the 20 types of amino acids. Helical amino acids can achieve higher prediction accuracy in general, while amino acids in beet sheet have higher accuracy at specific angular regions. The prediction accuracy of φ is negatively correlated with amino acid flexibility represented by Vihinen Index. The prediction accuracy of φ can also be negatively correlated with angle distribution dispersion.
    No preview · Article · Jun 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins (IDPs) and proteins with long intrinsically disordered protein regions (IDPRs) lack ordered structure but are involved in a multitude of biological processes, where they often serve as major regulators and controllers of various functions of their binding partners. Furthermore, IDPs/IDPRs are often related to the pathogenesis of various diseases, including cancer. Intrinsic disorder confers multiple functional advantages to its carriers. As a result, due to their functional versatility and structural plasticity, IDPs and IDPRs are common in various proteomes, including proteomes of different pathological organisms. Viruses are "well-educated" users of various aspects of intrinsic disorder for their advantage. These small but highly efficient invaders broadly use intrinsic disorder to overrun the host organism's defense system, as well as to seize and overrun host systems and pathways forcing them to work for the virus needs, to ensure accommodation of viruses to their variable and often hostile habitats, and to promote and support the economic usage of the viral genetic material. Human papillomaviruses (HPVs), with their tiny proteomes (the entire HPV genome includes just eight open reading frames), intricate life cycle, and ability to either cause benign papillomas/warts or promote the development of carcinomas of the genital tract, head and neck and epidermis, attracted considerable attention of researchers. This review analyzes the plentitude and demeanor of intrinsic disorder in proteins from HPVs and their cellular targets.
    Full-text · Article · May 2013 · Current pharmaceutical design
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: https://is.landesbioscience.com/article/25724/full_text/#load/info/all The Pfam database groups regions of proteins by how well hidden Markov models (HMMs) can be trained to recognize similarities among them. Conservation pressure is probably in play here. The Pfam seed training set includes sequence and structure information, being drawn largely from the PDB. A long standing hypothesis among intrinsically disordered protein (IDP) investigators has held that conservation pressures are also at play in the evolution of different kinds of intrinsic disorder, but we find that predicted intrinsic disorder (PID) is not always conserved across Pfam domains. Here we analyze distributions and clusters of PID regions in 193024 members of the version 23.0 Pfam seed database. To include the maximum information available for proteins that remain unfolded in solution, we employ the 10 linearly independent Kidera factors1–3 for the amino acids, combined with PONDR4 predictions of disorder tendency, to transform the sequences of these Pfam members into an 11 column matrix where the number of rows is the length of each Pfam region. Cluster analyses of the set of all regions, including those that are folded, show 6 groupings of domains. Cluster analyses of domains with mean VSL2b scores greater than 0.5 (half predicted disorder or more) show at least 3 separated groups. It is hypothesized that grouping sets into shorter sequences with more uniform length will reveal more information about intrinsic disorder and lead to more finely structured and perhaps more accurate predictions. HMMs could be trained to include this information.
    Full-text · Article · Apr 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins (IDPs) are a relatively recently defined class of proteins which, under native conditions, lack a unique tertiary structure whilst maintaining essential biological functions. Functional classification of IDPs have implicated such proteins as being involved in various physiological processes including transcription and translation regulation, signal transduction and protein modification. Actinidia DRM1 (Ade DORMANCY ASSOCIATED GENE 1), represents a robust dormancy marker whose mRNA transcript expression exhibits a strong inverse correlation with the onset of growth following periods of physiological dormancy. Bioinformatic analyses suggest that DRM1 is plant specific and highly conserved at both the nucleotide and protein levels. It is predicted to be an intrinsically disordered protein with two distinct highly conserved domains. Several Actinidia DRM1 homologues, which align into two distinct Actinidia-specific families, Type I and Type II, have been identified. No candidates for the Arabidopsis DRM1-Homologue (AtDRM2) an additional family member, has been identified in Actinidia.
    Full-text · Article · Mar 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intrinsically disordered proteins or proteins with disordered regions are very common in nature. These proteins have numerous biological functions which are complementary to the biological activities of traditional ordered proteins. A noticeable difference in the amino acid sequences encoding long and short disordered regions was found and this difference was used in the development of length-dependent predictors of intrinsic disorder. In this study, we analyze the scaling of intrinsic disorder in eukaryotic proteins and investigate the presence of length-dependent functions attributed to proteins containing long disordered regions.
    Full-text · Article · Feb 2013 · Journal of Biological Systems
  • [Show abstract] [Hide abstract]
    ABSTRACT: In proteins, all amino acid residues are susceptible to oxidation by various reactive oxygen species (ROS), with methionine and cysteine residues being particularly sensitive to oxidation. Methionine oxidation is known to lead to destabilization and inactivation of proteins, and oxidatively modified proteins can accumulate during aging, oxidative stress, and in various age-related diseases. Although the efficiency of a given methionine oxidation can depend on its solvent accessibility (evaluated from a protein structure as the accessible surface area of the corresponding methionine residue), many experimental results on oxidation rate and oxidation sites cannot be unequivocally explained by the methionine solvent accessible surface area alone. In order to explore other possible mechanisms, we analyzed a set of seventy-one oxidized methionines contained in thirty-one proteins by various bioinformatics tools. In which, 41% of the methionines are exposed, 15% are buried but with various degree of flexibility, and the rest 44% are buried and structured. Buried but highly flexible methionines can be oxidized. Buried and less flexible methionines can acquire additional local structural flexibility from flanking regions to facilitate the oxidation. Oxidation of buried and structured methionine can also be promoted by the oxidation of neighboring methionine that is more exposed and/or flexible. Our data are consistent with the hypothesis that protein structural flexibility represents another important factor favoring the oxidation process.
    No preview · Article · Apr 2012 · Protein and Peptide Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.
    Full-text · Article · Apr 2012 · Journal of biomolecular Structure & Dynamics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (Kv) channels are tetrameric assemblies of transmembrane Kv proteins with cytosolic N- and C-termini. The N-terminal domain of Kv1 proteins binds to β-subunits, but the role of the C-terminus is less clear. Therefore, we studied the role of the C-terminus in regulating Kv1.5 channel and its interactions with Kvβ-subunits. When expressed in COS-7 cells, deletion of the C-terminal domain of Kv1.5 did not affect channel gating or kinetics. Coexpression of Kv1.5 with Kvβ3 increased current inactivation, whereas Kvβ2 caused a hyperpolarizing shift in the voltage dependence of current activation. Inclusion of NADPH in the patch pipette solution accelerated the inactivation of Kv1.5-Kvβ3 currents. In contrast, NADP(+) decreased the rate and the extent of Kvβ3-induced inactivation and reversed the hyperpolarizing shift in the voltage dependence of activation induced by Kvβ2. Currents generated by Kv1.5ΔC+Kvβ3 or Kv1.5ΔC+Kvβ2 complexes did not respond to changes in intracellular pyridine nucleotide concentration, indicating that the C-terminus is required for pyridine nucleotide-dependent interactions between Kvβ and Kv1.5. A glutathione-S-transferase (GST) fusion protein containing the C-terminal peptide of Kv1.5 did not bind to apoKvβ2, but displayed higher affinity for Kvβ2:NADPH than Kvβ2:NADP(+). The GST fusion protein also precipitated Kvβ proteins from mouse brain lysates. Pull-down experiments, structural analysis and electrophysiological data indicated that a specific region of the C-terminus (Arg543-Val583) is required for Kvβ binding. These results suggest that the C-terminal domain of Kv1.5 interacts with β-subunits and that this interaction is essential for the differential regulation of Kv currents by oxidized and reduced nucleotides.
    Full-text · Article · Mar 2012 · Pflügers Archiv - European Journal of Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular matrix is very well organized at the supramolecular and tissue levels and little is known on the potential role of intrinsic disorder in promoting its organization. We predicted the amount of disorder and identified disordered regions in the human extracellular proteome with established computational tools. The extracellular proteome is significantly enriched in proteins comprising more than 50% of disorder compared to the complete human proteome. The enrichment is mostly due to long disordered regions containing at least 100 consecutive disordered residues. The amount of intrinsic disorder is heterogeneous in the extracellular protein families, with the most disordered being collagens and the small integrin-binding ligand N-linked glycoproteins. Although most domains found in extracellular proteins are structured, the fibronectin III domains contain a variable amount of disordered residues (up to 92%). Binding sites for heparin and integrins are found in disordered sequences of extracellular proteins. Intrinsic disorder is evenly distributed in hubs and ends in the interaction network of extracellular proteins with their extracellular partners. In contrast, extracellular hubs are significantly enriched in disorder in the network of extracellular proteins with their extracellular, membrane and intracellular partners. Disorder could thus provide the structural plasticity required for the hubs to interact with membrane and intracellular proteins. Organization and assembly of the extracellular matrix, development of mineralized tissues and cell-matrix adhesion are the biological processes overrepresented in the most disordered extracellular proteins. Extracellular disorder is associated with binding to growth factors, glycosaminoglycans and integrins at the molecular level.
    No preview · Article · Dec 2011 · Molecular BioSystems

Publication Stats

183 Citations
59.60 Total Impact Points

Institutions

  • 2011-2015
    • University of South Florida
      • • Department of Cell Biology, Microbiology and Molecular Biology
      • • Division of Molecular Medicine
      Tampa, Florida, United States
  • 2008-2011
    • Indiana University-Purdue University Indianapolis
      • • Center for Computational Biology and Bioinformatics
      • • Department of Medicine
      Indianapolis, Indiana, United States