B. R. Clemesha

National Institute for Space Research, Brazil, São José dos Campos, São Paulo, Brazil

Are you B. R. Clemesha?

Claim your profile

Publications (249)290.48 Total impact

  • Source
    L. M. Lima · L. R. Araújo · E. O. Alves · P. P. Batista · B. R. Clemesha
    [Show abstract] [Hide abstract]
    ABSTRACT: The meteor radar measurements obtained at Cachoeira Paulista (22.7°S), Brazil, have been used to study a possible relationship between meteor echo height variations and solar flux during solar cycle 23. A good concordance between the normalized values of the annual mean of the meteor peak heights and F10.7 solar radio flux and Mg_II solar indexes have been observed during declining phase of the solar cycle 23. After eliminating the solar activity influence, the annual mean of the meteor echo peak heights showed a linear decrease of 30 m/year when Mg_II solar index is used and 38 m/year when F10.7 solar radio flux is used. When the trend is eliminated the relationship between meteor peak heights and F10.7 solar flux indicate a trend of 672 m/100 sfu (sfu-solar flux unit). The meteor amplitude signals and the decay time drops after mid-2004, which may be attributed to the decreasing of the electron density in the meteor trails. The meteor echo peak height decrease has been interpreted as being caused by a reduction in air density in the upper atmosphere.
    Full-text · Article · Oct 2015 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    A. Guharay · P.P. Batista · B.R. Clemesha
    [Show abstract] [Hide abstract]
    ABSTRACT: Using meteor radar observations of four years in the mesosphere and lower thermosphere (MLT) over a subtropical Brazilian station, Cachoeira Paulista (22.7°S, 45°W), the temporal variability characteristics of the diurnal tide have been studied. In addition to the semiannual, annual and interannual variations, the diurnal tide amplitude exhibits clear intermittent modulation at periods of planetary waves. The tidal amplitude exhibits clear seasonal pattern with largest amplitude in fall equinox. The dominant periods of modulation of the diurnal tide are found to be greater than 10 days in the MLT. The diurnal tide, as detected in the power spectra of the horizontal winds, shows a spread in period around the central period (24 h) which is an indication of nonlinear interactions between the diurnal tide and planetary waves. A bispectral analysis reveals prominent triplets (two primary waves and a secondary wave) confirming the interaction of the diurnal tide with planetary waves persistent over a broad spectral range. Also there is an indication of coupling of the diurnal tide with the intraseasonal oscillations at various times of the year.
    Full-text · Article · Oct 2015 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have applied a modified composite day analysis to the Hocking (2005) technique to study gravity wave (GW) momentum fluxes in the mesosphere and lower thermosphere (MLT). Wind measurements from almost continuous meteor radar observations during June 2004–December 2008 over São João do Cariri (Cariri; 7° S, 36° W), April 1999–November 2008 over Cachoeira Paulista (CP; 23° S, 45° W), and February 2005–December 2009 over Santa Maria (SM; 30° S, 54° W) were used to estimate the GW momentum fluxes and variances in the MLT region. Our analysis can provide monthly mean altitude profiles of vertical fluxes of horizontal momentum for short-period (less than 2–3 h) GWs. The averages for each month throughout the entire data series have shown different behavior for the momentum fluxes depending on latitude and component. The meridional component has almost the same behavior at the three sites, being positive (northward), for most part of the year. On the other hand, the zonal component shows different behavior at each location: it is positive for almost half the year at Cariri and SM but predominantly negative over CP. Annual variation in the GW momentum fluxes is present at all sites in the zonal component and also in SM at 89 km in the meridional component. The seasonal analysis has also shown a 4-month oscillation at 92.5 km over SM in the zonal component and over CP at the same altitudes but for the meridional component.
    Full-text · Article · Sep 2015 · Annales Geophysicae
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Planetary scale waves in equatorial region transport a significant amount of energy and momentum through atmosphere. Quantifying the momentum transported by these waves and its effects toward the mean flow is rather important. Direct estimative of the momentum flux transported by these waves requires horizontal and vertical wind measurements. Ground-based meteor radars have provided continuous and reliable measurements of the horizontal wind components in the MLT region. On the other hand, vertical wind component does not present the same reliability. However, an approach presented by Babu et al. (2012), made possible to calculate tridimensional daily winds by using only near zenith echoes detected around their maximum counting rate, i.e., during early morning hours. From daily tridimensional winds, momentum fluxes due to planetary scale waves can be estimated. Following this approach, we have used measurements performed by a meteor radar installed at São João do Cariri (7.4ºS; 36.5ºW) in order to measure vertical winds and after determine the momentum flux transported by these waves. Vertical wind presents magnitudes of a few meters per second and occasionally reaches magnitudes higher than 10 m/s. Below 92 km vertical wind is upward during the whole year and above exhibits a semi-annual oscillation with downward phase during the equinoxes. Variations associated to planetary scale waves in the vertical wind are also observed and some of them appear simultaneously in the zonal and meridional wind. Vertical transport of zonal momentum fluxes of 3-4 day component is found to be maximum near autumn equinox, when its value reaches almost 20 m 2 s-2 , while minimum momentum fluxes were observed before winter solstice.
    Full-text · Conference Paper · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meteor radar observations at São João do Cariri (7.4°S; 36.5°W), Cachoeira Paulista (22.7°S; 45°W) and Santa Maria (29.7°S; 53.7°W) have permitted estimates to be made of winds in the mesosphere and lower thermosphere (MLT) over the Brazilian sector simultaneously. Using horizontal winds the semidiurnal lunar tide is determined from January 2005 to December 2008 for these three sites. The lunar tide is observed to reach amplitudes as large as 8. m/s. In general, the amplitude increases with height and the phase decreases with height, corresponding to an upwardly-propagating tide. The estimated vertical wavelengths are variable for some month, like December at Cachoeira Paulista for northward wind, April and June at Santa Maria for eastward wind, which indicates possible mode coupling and reflection. Characteristics similar to those seen in the Northern Hemisphere have been observed in June and October at São João do Cariri, in December at Cachoeira Paulista, in March at Santa Maria and in August at all observation sites, which suggest the presence of antisymmetric modes. Different behavior has been observed in the amplitudes, phases and vertical wavelengths at each station, indicating latitudinal variation even from the low to the equatorial region.
    Full-text · Article · Aug 2015 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    Paulo Prado Batista · Barclay Robert Clemesha · Dale Martin Simonich

    Full-text · Conference Paper · Jun 2015
  • Source
    Vânia F. Andrioli · Dave C Fritts · Paulo P. Batista · Barclay R. Clemesha

    Full-text · Dataset · Jun 2015
  • Source

    Full-text · Dataset · May 2015
  • Source
    Paulo Batista · Barclay Clemesha · Dale Simonich · Yang Guotao

    Full-text · Dataset · May 2015
  • Source
    Paulo Prado Batista · Barclay Robert Clemesha · Dale Martin Simonich
    [Show abstract] [Hide abstract]
    ABSTRACT: The Laser radar technique has been used measure mesospheric sodium density over São José dos Campos, SP (23° 12' S, 45° 51' W). Changes with time in the sodium layer structure shows the presence of oscillations with vertical wavelenghts > 20 km and a probable period of 24 hours. Theoretical calculations have been carried out to predict the solar thermal tide in this region. It is shown that the oscillating structures are consistent with the predictions for yhe solar diurnal atmospheric tide, which is dominated by the Hw1,1 tidal mode with wavelength > 20 km. Number of Pages: 25
    Full-text · Technical Report · May 2015
  • Source
    A. Guharay · P.P. Batista · B.R. Clemesha
    [Show abstract] [Hide abstract]
    ABSTRACT: An exclusive study has been carried out with long term meteor wind data (2000-2014) to characterize the quasi-2- day wave (QTDW) in the mesosphere and lower thermosphere (MLT) and its interactions with the longer period planetary waves at Cachoeira Paulista (22.7°S, 45°W). The QTDW is observed to be dominant during late summer (January-February) all the years under consideration except 2013. All the wave parameters exhibit significant interannual variability. The maximum wave amplitude comes out to be 39 m/s, which is significantly higher than the reported northern hemispheric findings. The mean MLT period exhibits a wide range of variability (36-70 h) indicating the presence of multiple Rossby normal modes with varying zonal wave numbers. Modulations of the QTDW amplitude by the planetary waves with longer periodicities (>9 days) are evident, especially during summer. The nonlinear interactions between the 2- day wave and longer period waves are believed to give rise to a host of secondary waves with frequencies lying close to 2- day. The strong QTDW activity, as observed at this location, has potential to cause significant effect on the overlying ionosphere and hence the atmosphere-ionosphere dynamical coupling.
    Full-text · Article · May 2015 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    A. Guharay · P.P. Batista · B.R. Clemesha · R.A. Buriti
    [Show abstract] [Hide abstract]
    ABSTRACT: A comparative study of intraseasonal oscillations (ISO) in the period range 20–110 days is carried out in the mesosphere and lower thermosphere (MLT) zonal wind at two low latitude stations, Cariri (7.4°S, 36.5°W) and Cachoeira Paulista (22.7°S, 45°W) located far from the convective anomaly region. Considerable seasonal and interannual variability is observed. The ISO in the MLT and lower atmosphere are found to be well correlated during winter and spring indicating a coupling of the atmospheric regions through the ISO. On the other hand, relatively less correlation during summer and fall may suggest a dominance of the in situ excitation of the ISO in the MLT relative to the lower atmospheric contribution. The correlation between the MLT and lower atmosphere is found to be a little higher at Cachoeira Paulista than Cariri. The ISO in the MLT shows good correlation between the two stations, but correlation is insignificant in the case of lower atmosphere. The ISO is most prominent in the upper troposphere, upper stratosphere and MLT. The waves responsible for communicating the ISO signature from the troposphere to the middle atmosphere in the tropics are believed to refract through mid-latitudes in course of their propagation. An evident height variation of the high amplitude ISO in the upper troposphere is observed with a clear annual oscillation at Cariri. The observed behaviors of the ISO at the present sites are discussed in the light of plausible physical mechanisms.
    Full-text · Article · Dec 2014 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characteristics of the intraseasonal oscillations (ISO) in the mesosphere and lower thermosphere (MLT) are investigated using meteor radar wind observations from a South American, equatorial station, Sao Joao do Cariri (7.4 degrees S, 36.5 degrees W) during 2008. A prominent ISO signature is observed during January-May in the period band approximately 40 to 70 days in the MLT zonal wind. In the lower atmosphere, a dominant ISO is observed in the period band approximately 30 to 60 days in the outgoing longwave radiation (OLR) (a proxy for convection), total columnar water vapor (a proxy for tides), and zonal wind. Considerable high correlation of the ISO between the MLT and lower atmosphere indicates significant dynamical coupling between the lower and middle atmosphere during the observational period. The MLT-ISO shows conspicuous downward propagation of the peak amplitude indicating the role of the dissipating upward propagating waves for its generation. The amplitudes in the zonal wind of the dominant tidal components in the MLT exhibit conspicuous ISO modulation. The eastward propagating waves and tides are surmised to be responsible for communicating the ISO signature from the lower atmosphere to the MLT. The origin of the MLT-ISO is believed to take place in the lower troposphere, below 4 km. The MLT-ISO is believed to be the imprint of the lower atmospheric Madden-Julian oscillation which travels eastward from the Indian Ocean-western Pacific Ocean to the present location.
    Full-text · Article · Nov 2014 · Earth Planets and Space
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mean winds and tidal signatures in the mesosphere and lower thermosphere (MLT) region are derived from meteor radar observations at three sites around 22°S acquired in 2005. The observed differences of mean winds and tides are discussed in relation to the meteorological situation in the lower atmosphere and the possible generation of non-migrating tides. The longitudinally well separated radar sites allowed the evaluation of the migrating tidal component. The seasonal variation of signatures of the diurnal tide derived from ground-based radar observations, TIDI measurements aboard TIMED satellite, and model results obtained with HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere) are compared. The ground-based, satellite, and model results of the total diurnal tide are in good agreement. The same is true for the migrating diurnal tide obtained from the radar observations, TIDI observations and from the model studies of HAMMONIA and GSWM00 (Global Scale Wave Model).
    Full-text · Article · Oct 2014 · Journal of Atmospheric and Solar-Terrestrial Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mean dynamical state of the equatorial middle atmosphere is significantly controlled by large scale long period oscillations, i.e. semiannual oscillations (SAO) and quasi-biennial oscillations (QBO). These oscillations show downward propagation of their phases with altitude since they are driven by deposition of energy from upward propagating gravity waves, Rossby waves, Kelvin waves etc. Convective processes are believed to be the most important mechanism for driving these waves which cause the strong SAO and QBO in the stratosphere and comparatively weak oscillations in the mesosphere. In addition to long period oscillations, the equatorial lower and middle atmosphere wind exhibits significant oscillations in the period range 20-100 days which are termed as Intraseasonal Oscillations (ISO). The ISO was first observed in the mesosphere and lower thermosphere (MLT) zonal wind in the period range 10-100 days with dominant periodicities in the bands ~ 60, 35-40, 20-25 days using medium-frequency (MF) radar near the equator. There was a striking similarity of the observed ISO in the MLT with their tropospheric counterpart, i.e. Madden-Julian Oscillation (MJO). Strong ISO modulation by the gravity waves and diurnal tide was found. The MJO can be interpreted as a mixed Kelvin/Rossby waves near the source region and an eastward propagating Kelvin wave away from the source. The MJO feature in the zonal wind exhibits an out of phase behavior in the lower and upper troposphere and it decays drastically above it. Although the MJO is a large scale feature in the equatorial tropospheric zonal wind it cannot propagate vertically upward to the MLT region due to its low phase speed, then it is suggested that the MJO modulated tropospheric convection causes similar modulation of the upward propagating gravity waves and nonmigrating diurnal tide and as these waves break/dissipate in the MLT region they drive intraseasonal variation in the ambient wind. Despite a number of investigations of the ISO carried out over Indian Ocean-western pacific sector (convective anomaly source region), observations from the South American region (away from the sources) are scarce. Therefore in this work we have studied the characteristics of the MLT-ISO at São João do Cariri (hereafter Cariri) (7.4oS, 36.5oW), its correspondence with the lower atmospheric counterpart, i.e. MJO as well as the possible generation mechanism for excitation in the lower and middle atmosphere. It should be mentioned that the most coherent ISO feature over various atmospheric regions at the present station is found during early 2008 (not observed in other years) and hence we have selected the year 2008 for the present study.
    Full-text · Conference Paper · Sep 2014
  • Source
    Paulo Prado Batista · Barclay Robert Clemesha · Dale Martin Simonich
    [Show abstract] [Hide abstract]
    ABSTRACT: Lidar measurements of aerosols at INPE (São José dos Campos, SP, Brazil) started in 1969 and sodium measurements in 1971 After 1993 more powerful laser introduced in the system permitted the measurements of Rayleigh signal up to 75 km. Average nocturnal profiles are obained on a near regular basis. Monthly average profiles are used to study the temperature and density climatology from 30 to 65 km altitude. 21 years of temperature data from 35 to 65 km of altitude are used to study the long-term variability during this perio
    Full-text · Conference Paper · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3 identic all sky interpherometric Meteor Radars � -All SKy Interferometer METeor Radars at Cachoeira Paulista (22.7° S, 45° W) – April 1999- present; Cariri (7° S, 38° W) – May 2004- March 2009; Santa Maria (29.7° S, 55° W) – December 2004-April 2012. Study the southern hemisphere low latitude dynamics covering the aspects of mean winds, planetary waves, Tides and gravity waves in short and long-term basis.
    Full-text · Conference Paper · Aug 2014
  • Source

    Full-text · Presentation · Aug 2014
  • Source
    Amitava Guharay · Paulo Prado Batista · Barclay Robert Clemesha
    [Show abstract] [Hide abstract]
    ABSTRACT: The characteristics of long period atmospheric oscillations are studied using long-term meteor radar wind observations over a low-latitude Brazilian station, Cachoeira Paulista (22.7°S, 45°W). The semiannual oscillation (SAO) amplitude decreases gradually with altitude in the mesopause region, while the annual oscillation (AO) amplitude exhibits a minimum at mid-mesopause with significant interannual variability. The quasi-biennial oscillation (QBO) obtained by removing the SAO and AO from the zonal wind exhibits an out-of-phase relationship at lower mesopause heights (approximately 81 km) and mid-stratosphere (approximately 10 hPa). There is an evident signature of modulation of the mesospheric SAO (MSAO) and mesospheric AO (MAO) by the QBO. The diurnal tide is surmised to contribute significantly to drive the easterly phase of these oscillations, especially MSAO and MAO through depositing westward momentum to the background wind. The westerly phase of the MSAO is believed to support the growth of the quasi-2-day wave (QTDW) by wave filtering. The QTDW is found to be strong during the easterly phase of the MAO indicating a possible existence of the barotropic/baroclinic instability during summer and a possible role of the QTDW towards westward forcing of the background wind.
    Full-text · Article · May 2014 · Earth Planets and Space
  • Source

    Full-text · Poster · May 2014

Publication Stats

2k Citations
290.48 Total Impact Points

Institutions

  • 1974-2014
    • National Institute for Space Research, Brazil
      • Aeronomy Division
      São José dos Campos, São Paulo, Brazil
  • 1973-2014
    • Fatec Sao Jose dos Campos
      São José, Santa Catarina, Brazil
  • 1977-1979
    • National Council for Scientific and Technological Development, Brazil
      Palmyra, Minas Gerais, Brazil