B. S. Gaudi

Lehigh University, Bethlehem, Pennsylvania, United States

Are you B. S. Gaudi?

Claim your profile

Publications (250)997.31 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively breaks a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is a joint summary of the reports from the three Astrophysics Program Analysis Groups (PAGs) in response to the "Planning for the 2020 Decadal Survey" charge given by the Astrophysics Division Director Paul Hertz. This joint executive summary contains points of consensus across all three PAGs. Additional findings specific to the individual PAGs are reported separately in the individual reports. The PAGs concur that all four large mission concepts identified in the white paper as candidates for maturation prior to the 2020 Decadal Survey should be studied in detail. These include the Far-IR Surveyor, the Habitable-Exoplanet Imaging Mission, the UV/Optical/IR Surveyor, and the X-ray Surveyor. This finding is predicated upon assumptions outlined in the white paper and subsequent charge, namely that 1) major development of future large flagship missions under consideration are to follow the implementation phases of JWST and WFIRST; 2) NASA will partner with the European Space Agency on its L3 Gravitational Wave Surveyor; 3) the Inflation Probe be classified as a probe-class mission to be developed according to the 2010 Decadal Survey report. If these key assumptions were to change, this PAG finding would need to be re-evaluated. The PAGs find that there is strong community support for the second phase of this activity - maturation of the four proposed mission concepts via Science and Technology Definition Teams (STDTs). The PAGs find that there is strong consensus that all of the STDTs contain broad and interdisciplinary representation of the science community. Finally, the PAGs find that there is community support for a line of Probe-class missions within the Astrophysics mission portfolio (condensed).
    Full-text · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: $K2$'s Campaign 9 ($K2$C9) will conduct a $\sim$3.4 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $\pi_{\rm E}$ for $\gtrsim$120 microlensing events, including several planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of ground-based resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in $K2$C9, which constitutes an important pathfinding mission and community exercise in anticipation of $WFIRST$.
    Full-text · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 ($\mu_{\rm cl}$(N,E) = (+0.36+-0.10, +1.42+-0.10) mas/yr) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using OGLE photometry is consistent with the value found based on the light curve displacement between Earth and Spitzer.
    No preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present photometric observations of RW Aurigae, a Classical T Tauri system, that reveal two remarkable dimming events. These events are similar to that which we observed in 2010-2011, which was the first such deep dimming observed in RW Aur in a century's worth of photometric monitoring. We suggested the 2010-2011 dimming was the result of an occultation of the star by its tidally disrupted circumstellar disk. In 2012-2013, the RW Aur system dimmed by ~0.7 mag for ~40 days and in 2014/2015 the system dimmed by ~2 mag for >250 days. The ingress/egress duration measurements of the more recent events agree well with those from the 2010-2011 event, providing strong evidence that the new dimmings are kinematically associated with the same occulting source. Therefore, we suggest that both the 2012-2013 and 2014-2015 dimming events, measured using data from the Kilodegree Extremely Little Telescope and the Kutztown University Observatory, are also occultations of RW Aur A by tidally disrupted circumstellar material. Recent hydrodynamical simulations of the eccentric fly-by of RW Aur B suggest the occulting body to be a bridge of material connecting RW Aur A and B. These simulations suggest the possibility of additional occultations, supported by the observations presented in this work. The color evolution of the dimmings suggest that the tidally stripped disk material includes dust grains ranging in size from small grains at the leading edge, typical of star forming regions, to large grains, ices or pebbles producing grey or nearly grey extinction deeper within the occulting material. It is not known whether this material represents arrested planet building prior to the tidal disruption event, or perhaps accelerated planet building as a result of the disruption event, but in any case the evidence suggests the presence of advanced planet building material in the space between RW Aur A and B.
    No preview · Article · Dec 2015 · The Astronomical Journal
  • S. Villanueva Jr · J. D. Eastman · B. S. Gaudi
    [Show abstract] [Hide abstract]
    ABSTRACT: The DEdicated MONitor of EXotransits (DEMONEX) was a 20 inch robotic and automated telescope to monitor bright stars hosting transiting exoplanets to discover new planets and improve constraints on the properties of known transiting planetary systems. We present results for the misaligned hot Jupiter XO-4b containing 7 new transits from the DEMONEX telescope, including 3 full and 4 partial transits. We combine these data with archival light curves and archival radial velocity measurements to derive the host star mass $M_{*}=1.293_{-0.029}^{+0.030} M_\odot$ and radius $R_{*}=1.554_{-0.030}^{+0.042} R_\odot$ as well as the planet mass $M_{P}=1.615_{-0.099}^{+0.10} M_{\rm J}$ and radius $R_{P}=1.317_{-0.029}^{+0.040} R_{\rm J}$ and a refined ephemeris of $P=4.1250687\pm0.0000024$ days and $T_{0}=2454758.18978\pm0.00024 \rm {BJD_{TDB}}$. We include archival Rossiter-McLaughlin measurements of XO-4 to infer the stellar spin-planetary orbit alignment $\lambda=-40.0_{-7.5}^{+8.8}$ degrees. We test the effects of including various detrend parameters, theoretical and empirical mass-radius relations, and Rossiter-McLaughlin models. We infer that detrending against CCD position and time or airmass can improve data quality, but can have significant effects on the inferred values of many parameters --- most significantly $R_{P}/R_{*}$ and the observed central transit times $T_{C}$. In the case of $R_{P}/R_{*}$ we find that the systematic uncertainty due to detrending can be three times that of the quoted statistical uncertainties. The choice of mass-radius relation has little effect on our inferred values of the system parameters. The choice of Rossiter-McLaughlin models can have significant effects of the inferred values of $v\sin{I_{*}}$ and the stellar spin-planet orbit angle $\lambda$.
    No preview · Article · Nov 2015
  • Jacob K. Luhn · Matthew T. Penny · B. Scott Gaudi
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent discoveries of circumbinary planets in Kepler data show that there is a viable channel of planet formation around binary main sequence stars. Motivated by these discoveries, we have investigated the caustic structures and detectability of circumbinary planets in microlensing events. We have produced a suite of animations of caustics as a function of the projected separation and angle of the binary host to efficiently explore caustic structures over the entire circumbinary parameter space. Aided by these animations, we have derived a semi-empirical analytic expression for the location of planetary caustics, which are displaced in circumbinary lenses relative to those of planets with a single host. We have used this expression to show that the dominant source of caustic motion will be due to the planet's orbital motion and not that of the binary star. Finally, we estimate the fraction of circumbinary microlensing events that are recognizable as such to be significant (5-50 percent) for binary projected separations in the range 0.1-0.5 in units of Einstein radii.
    No preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the mass and distance measurements of two single-lens events from the 2015 \emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is a $47\pm7$ $M_{\rm J}$ brown dwarf at $5.4\pm1.0$ kpc, and that the lens of OGLE-2015-BLG-0763 is a $0.50\pm0.04$ $M_\odot$ star at $6.9\pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses, including isolated stellar mass black holes and free floating planets, is dramatically increased once simultaneous ground- and space-based observations are conducted.
    No preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of KELT-4Ab, an inflated, transiting Hot Jupiter orbiting the brightest component of a hierarchical triple stellar system. The host star is an F star with $T_{\rm eff}=6206\pm75$ K, $\log g=4.108\pm0.014$, $\left[{\rm Fe}/{\rm H}\right]=-0.116_{-0.069}^{+0.065}$, ${\rm M_*}=1.201_{-0.061}^{+0.067} \ {\rm M}_{\odot}$, and ${\rm R_*}=1.610_{-0.068}^{+0.078} \ {\rm R}_{\odot}$. The best-fit linear ephemeris is $\rm {BJD_{TDB}} = 2456193.29157 \pm 0.00021 + E\left(2.9895936 \pm 0.0000048\right)$. With a magnitude of $V\sim10$, a planetary radius of $1.699_{-0.045}^{+0.046} \ {\rm R_J}$, and a mass of $0.902_{-0.059}^{+0.060} \ {\rm M_J}$, it is the brightest host among the population of inflated Hot Jupiters ($R_P > 1.5R_J$), making it a valuable discovery for probing the nature of inflated planets. In addition, its existence within a hierarchical triple and its proximity to Earth ($210$ pc) provides a unique opportunity for dynamical studies with continued monitoring with high resolution imaging and precision radial velocities. In particular, the motion of the binary stars around each other and of both stars around the primary star relative to the measured epoch in this work should be detectable when it rises in October 2015.
    No preview · Article · Sep 2015 · The Astronomical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of KELT-14b and KELT-15b, two hot Jupiters from the KELT-South survey. KELT-14b, an independent discovery of the recently announced WASP-122b, is an inflated Jupiter mass planet that orbits a $\sim5.0^{+0.3}_{-0.7}$ Gyr, $V$ = 11.0, G2 star that is near the main sequence turnoff. The host star, KELT-14 (TYC 7638-981-1), has an inferred mass $M_{*}$=$1.18_{-0.07}^{+0.05}$ M$_{\odot}$ and radius $R_{*}$=$1.37\pm{-0.08}$ R$_{\odot}$, and has T$_{eff}$=$5802_{-92}^{+95}$ K, $\log{g}$ = $4.23_{-0.04}^{+0.05}$ and [Fe/H] = $0.33\pm{-0.09}$. The planet orbits with a period of $1.7100588 \pm 0.0000025$ days ($T_{0}$=2457091.02863$\pm$0.00047) and has a radius R$_{P}$=$1.52_{-0.11}^{+0.12}$ R$_{J}$ and mass M$_{P}$ = $1.196\pm0.072$ M$_{J}$, and the eccentricity is consistent with zero. KELT-15b is another inflated Jupiter mass planet that orbits a $\sim$ $4.6^{+0.5}_{-0.4}$ Gyr, $V$ = 11.2, G0 star (TYC 8146-86-1) that is near the "blue hook" stage of evolution prior to the Hertzsprung gap, and has an inferred mass $M_{*}$=$1.181_{-0.050}^{+0.051}$ M$_{\odot}$ and radius $R_{*}$=$1.48_{-0.04}^{+0.09}$ R$_{\odot}$, and T$_{eff}$=$6003_{-52}^{+56}$ K, $\log{g}$=$4.17_{-0.04}^{+0.02}$ and [Fe/H]=$0.05\pm0.03$. The planet orbits on a period of $3.329441 \pm 0.000016$ days ($T_{0}$ = 2457029.1663$\pm$0.0073) and has a radius R$_{P}$=$1.443_{-0.057}^{+0.11}$ R$_{J}$ and mass M$_{P}$=$0.91_{-0.22}^{+0.21}$ M$_{J}$ and an eccentricity consistent with zero. KELT-14b has the second largest expected emission signal in the K-band for known transiting planets brighter than $K<10.5$. Both KELT-14b and KELT-15b are predicted to have large enough emission signals that their secondary eclipses should be detectable using ground-based observatories.
    No preview · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of KELT-10b, the first transiting exoplanet discovered using the KELT-South telescope. KELT-10b is a highly inflated sub-Jupiter mass planet transiting a relatively bright $V = 10.7$ star (TYC 8378-64-1), with T$_{eff}$ = $5948\pm74$ K, $\log{g}$ = $4.319_{-0.030}^{+0.020}$ and [Fe/H] = $0.09_{-0.10}^{+0.11}$, an inferred mass M$_{*}$ = $1.112_{-0.061}^{+0.055}$ M$_{\odot}$ and radius R$_{*}$ = $1.209_{-0.035}^{+0.047}$ R$_{\odot}$. The planet has a radius R$_{P}$ = $1.399_{-0.049}^{+0.069}$ R$_{J}$ and mass M$_{P}$ = $0.679_{-0.038}^{+0.039}$ M$_{J}$. The planet has an eccentricity consistent with zero and a semi-major axis $a$ = $0.05250_{-0.00097}^{+0.00086}$ AU. The best fitting linear ephemeris is $T_{0}$ = 2457066.72045$\pm$0.00027 BJD$_{TDB}$ and P = 4.1662739$\pm$0.0000063 days. This planet joins a group of highly inflated transiting exoplanets with a radius much larger and a mass much less than those of Jupiter. The planet, which boasts deep transits of 1.4%, has a relatively high equilibrium temperature of T$_{eq}$ = $1377_{-23}^{+28}$ K, assuming zero albedo and perfect heat redistribution. KELT-10b receives an estimated insolation of $0.817_{-0.054}^{+0.068}$ $\times$ 10$^9$ erg s$^{-1}$ cm$^{-2}$, which places it far above the insolation threshold above which hot Jupiters exhibit increasing amounts of radius inflation. Evolutionary analysis of the host star suggests that KELT-10b is unlikely to survive beyond the current subgiant phase, due to a concomitant in-spiral of the planet over the next $\sim$1 Gyr. The planet transits a relatively bright star which is accessible to large telescopes and exhibits the third largest transit depth of all transiting exoplanets with V $<$ 11 in the southern hemisphere, making it a promising candidate for future atmospheric characterization studies.
    Full-text · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a new photometry algorithm that is optimized for $Spitzer$ time series in crowded fields and that is particularly adapted to faint and/or heavily blended targets. We apply this to the 170 targets from the 2015 $Spitzer$ microlensing campaign and present the results of three variants of this algorithm in an online catalog. We present detailed accounts of the application of this algorithm to two difficult cases, one very faint and the other very crowded. Several of $Spitzer$'s instrumental characteristics that drive the specific features of this algorithm are shared by $Kepler$ and $WFIRST$, implying that these features may prove to be a useful starting point for algorithms designed for microlensing campaigns by these other missions.
    Preview · Article · Aug 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.
    No preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection and mass measurement of a binary lens OGLE-2015-BLG-1285La,b, with the more massive component having $M_1>1.35\,M_\odot$ (80% probability). A main-sequence star in this mass range is ruled out by limits on blue light, meaning that a primary in this mass range must be a neutron star or black hole. The system has a projected separation $r_\perp= 6.1\pm 0.4\,{\rm AU}$ and lies in the Galactic bulge. These measurements are based on the "microlens parallax" effect, i.e., comparing the microlensing light curve as seen from $Spitzer$, which lay at $1.25\,{\rm AU}$ projected from Earth, to the light curves from four ground-based surveys, three in the optical and one in the near infrared. Future adaptive optics imaging of the companion by 30m class telescopes will yield a much more accurate measurement of the primary mass. This discovery both opens the path and defines the challenges to detecting and characterizing black holes and neutron stars in wide binaries, with either dark or luminous companions. In particular, we discuss lessons that can be applied to future $Spitzer$ and $Kepler$ K2 microlensing parallax observations.
    Full-text · Article · Aug 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.
    No preview · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations of the source and lens stars for planetary microlensing event OGLE-2005-BLG-169, which confirm the relative proper motion prediction due to the planetary light curve signal observed for this event. This (and the companion Keck result) provide the first confirmation of a planetary microlensing signal, for which the deviation was only 2%. The follow-up observations determine the flux of the planetary host star in multiple passbands and remove light curve model ambiguity caused by sparse sampling of part of the light curve. This leads to a precise determination of the properties of the OGLE-2005-BLG-169Lb planetary system. Combining the constraints from the microlensing light curve with the photometry and astrometry of the HST/WFC3 data, we find star and planet masses of M_* = 0.69+- 0.02 M_solar and m_p = 14.1 +- 0.9 M_earth. The planetary microlens system is located toward the Galactic bulge at a distance of D_L = 4.1 +- 0.4 kpc, and the projected star-planet separation is a_perp = 3.5 +- 0.3 AU, corresponding to a semi-major axis of a = 4.0 (+2.2 -0.6) AU.
    Preview · Article · Jul 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The co-planarity of solar-system planets led Kant to suggest that they formed from an accretion disk, and the discovery of hundreds of such disks around young stars as well as hundreds of co-planar planetary systems by the {\it Kepler} satellite demonstrate that this formation mechanism is extremely widespread. Many moons in the solar system, such as the Galilean moons of Jupiter, also formed out of the accretion disks that coalesced into the giant planets. We report here the discovery of an intermediate system OGLE-2013-BLG-0723LB/Bb composed of a Venus-mass planet orbiting a brown dwarf, which may be viewed either as a scaled down version of a planet plus star or as a scaled up version of a moon plus planet orbiting a star. The latter analogy can be further extended since they orbit in the potential of a larger, stellar body. For ice-rock companions formed in the outer parts of accretion disks, like Uranus and Callisto, the scaled masses and separations of the three types of systems are similar, leading us to suggest that formation processes of companions within accretion disks around stars, brown dwarfs, and planets are similar.
    Full-text · Article · Jul 2015 · The Astrophysical Journal
  • Source
    Thomas G. Beatty · B. Scott Gaudi
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate astrophysical contributions to the statistical uncertainty of precision radial velocity measurements of stellar spectra. We analytically determine the uncertainty in centroiding isolated spectral lines broadened by Gaussian, Lorentzian, Voigt, and rotational profiles, finding that for all cases and assuming weak lines, the uncertainty is the line centroid is $\sigma_V\approx C\,\Theta^{3/2}/(W I_0^{1/2})$, where $\Theta$ is the full-width at half-maximum of the line, $W$ is the equivalent width, and $I_0$ is the continuum signal-to-noise ratio, with $C$ a constant of order unity that depends on the specific line profile. We use this result to motivate approximate analytic expressions to the total radial velocity uncertainty for a stellar spectrum with a given photon noise, resolution, wavelength, effective temperature, surface gravity, metallicity, macroturbulence, and stellar rotation. We use these relations to determine the dominant contributions to the statistical uncertainties in precision radial velocity measurements as a function of effective temperature and mass for main-sequence stars. For stars more than $\sim1.1\,M_\odot$ we find that stellar rotation dominates the velocity uncertainties for moderate and high resolution spectra ($R\gtrsim30,000$). For less massive stars, a variety of sources contribute depending on the spectral resolution and wavelength, with photon noise due to decreasing bolometric luminosity generally becoming increasingly important for low-mass stars at fixed exposure time and distance. In most cases, resolutions greater than 60,000 provide little benefit in terms of statistical precision. We determine the optimal wavelength range for stars of various spectral types, finding that the optimal region depends on the stellar effective temperature, but for mid M-dwarfs and earlier the most efficient wavelength region is from 6000A to 9000A.
    Preview · Article · Jul 2015 · Publications of the Astronomical Society of the Pacific
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a microlensing exoplanet OGLE-2012-BLG-0563Lb with the planet-star mass ratio ~1 x 10^{-3}. Intensive photometric observations of a high-magnification microlensing event allow us to detect a clear signal of the planet. Although no parallax signal is detected in the light curve, we instead succeed at detecting the flux from the host star in high-resolution JHK'-band images obtained by the Subaru/AO188 and IRCS instruments, allowing us to constrain the absolute physical parameters of the planetary system. With the help of a spectroscopic information of the source star obtained during the high-magnification state by Bensby et al. (2013), we find that the lens system is located at 1.3^{+0.6}_{-0.8} kpc from us, and consists of an M dwarf (0.34^{+0.12}_{-0.20} M_sun) orbited by a Saturn-mass planet (0.39^{+0.14}_{-0.23} M_Jup) at the projected separation of 0.74^{+0.26}_{-0.42} AU (close model) or 4.3^{+1.5}_{-2.5} AU (wide model). The probability of contamination in the host star's flux, which would reduce the masses by a factor of up to 3, is estimated to be 17%. This possibility can be tested by future high-resolution imaging. We also estimate the (J-Ks) and (H-Ks) colors of the host star, which are marginally consistent with a low-metallicity mid-to-early M dwarf, although further observations are required for the metallicity to be conclusive. This is the fifth sub-Jupiter-mass (0.2<m_p/M_Jup<1) microlensing planet around an M dwarf with the mass well constrained. The relatively rich harvest of sub-Jupiters around M dwarfs is contrasted with a possible paucity of ~1--2 Jupiter-mass planets around the same type of star, which can be explained by the planetary formation process in the core accretion scheme.
    Full-text · Article · Jun 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with $T_{\rm eff} = 5754_{-55}^{+54}$ K, $\log{g} = 4.078_{-0.054}^{+0.049}$, $[Fe/H] = 0.272\pm0.038$, an inferred mass $M_{*}=1.211_{-0.066}^{+0.078}$ M$_{\odot}$, and radius $R_{*}=1.67_{-0.12}^{+0.14}$ R$_{\odot}$. The planetary companion has mass $M_P = 0.867_{-0.061}^{+0.065}$ $M_{J}$, radius $R_P = 1.86_{-0.16}^{+0.18}$ $R_{J}$, surface gravity $\log{g_{P}} = 2.793_{-0.075}^{+0.072}$, and density $\rho_P = 0.167_{-0.038}^{+0.047}$ g cm$^{-3}$. The planet is on a roughly circular orbit with semimajor axis $a = 0.04571_{-0.00084}^{+0.00096}$ AU and eccentricity $e = 0.035_{-0.025}^{+0.050}$. The best-fit linear ephemeris is $T_0 = 2456883.4803 \pm 0.0007$ BJD$_{\rm TDB}$ and $P = 3.24406 \pm 0.00016$ days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar $\log{g}$ and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of $T_{eq}=1675^{+61}_{-55}$ K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.
    Full-text · Article · May 2015 · The Astrophysical Journal

Publication Stats

5k Citations
997.31 Total Impact Points

Institutions

  • 2015
    • Lehigh University
      • Department of Physics
      Bethlehem, Pennsylvania, United States
  • 1996-2015
    • The Ohio State University
      • Department of Astronomy
      Columbus, Ohio, United States
  • 2014
    • Kyoto Sangyo University
      • Department of Physics
      Kioto, Kyoto, Japan
  • 2013
    • William Penn University
      Worcester, Massachusetts, United States
  • 2010
    • Konan University
      • Department of Physics
      Kōbe, Hyōgo, Japan
    • Fisk University
      • Department of Physics
      Nashville, Tennessee, United States
  • 2003-2008
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Harvard University
      • Department of Astronomy
      Cambridge, Massachusetts, United States
  • 2007
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, California, United States
  • 2002
    • Institute for Advanced Study
      Princeton Junction, New Jersey, United States
    • University of Chicago
      • Department of Astronomy and Astrophysics
      Chicago, Illinois, United States