Anil C. Seth

University of Utah, Salt Lake City, Utah, United States

Are you Anil C. Seth?

Claim your profile

Publications (146)555.43 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the widest-field resolved stellar map to date of the closest ($D\sim3.8$ Mpc) massive elliptical galaxy NGC 5128 (Centaurus A; Cen A), extending out to a projected galactocentric radius of $\sim150$ kpc. The dataset is part of our ongoing Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) utilizing the Magellan/Megacam imager. We resolve a population of old red giant branch stars down to $\sim1.5$ mag below the tip of the red giant branch, reaching surface brightness limits as low as $\mu_{V,0}\sim32$ mag arcsec$^{-2}$. The resulting spatial stellar density map highlights a plethora of previously unknown streams, shells, and satellites, including the first tidally disrupting dwarf around Cen A, which underline its active accretion history. We report 13 previously unknown dwarf satellite candidates, of which 9 are confirmed to be at the distance of Cen A (the remaining 4 are not resolved into stars), with magnitudes in the range $M_V=-7.2$ to $-13.0$, central surface brightness values of $\mu_{V,0}=25.4-26.9$ mag arcsec$^{-2}$, and half-light radii of $r_h=0.22-2.92$ kpc. These values are in line with Local Group dwarfs but also lie at the faint/diffuse end of their distribution; most of the new dwarfs are fainter than the previously known Cen A satellites. The newly discovered dwarfs and halo substructures are discussed in light of their stellar populations, and they are compared to those discovered by the PAndAS survey of M31.
    Preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of $\sim$50 kpc from NGC 253, as part of the PISCeS (Panoramic Imaging Survey of Centaurus and Sculptor) project. We measure a tip of the red giant branch distance of $3.12\pm0.30$ Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of red giant branch (RGB) stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, $\sim$12 Gyr, and metal poor, $-2.3<$[Fe/H]$<-1.1$, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal poor $2-3$ Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction $M_{HI}/L_V<0.02$ Msun/Lsun. The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of $M_V=-12.1\pm0.5$ mag and a half-light radius of $r_h=2.94\pm0.46$ kpc which makes it moderately larger than dwarf galaxies in the Local Group of the same luminosity. However, Scl-MM-Dw2 is very elongated ($\epsilon=0.66\pm0.06$) and it has an extremely low surface brightness ($\mu_{0,V}=26.5\pm0.7$ mag arcsec$^{-2}$). Its elongation and diffuseness make it an outlier in the ellipticity-luminosity and surface brightness-luminosity scaling relations. These properties suggest that this dwarf is being tidally disrupted by NGC 253.
    No preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda's galactic disk. We see a clear metallicity gradient of $-0.020\pm0.004$ dex/kpc from $\sim4-20$ kpc assuming a constant RGB age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction and is quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1$\sigma$ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3-6 kpc that appears to be associated with Andromeda's elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.
    Preview · Article · Oct 2015 · The Astronomical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the wide-field Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we investigate the resolved stellar halos of two nearby galaxies (the elliptical Centaurus A and the spiral Sculptor, D $\sim3.7$ Mpc) out to a projected galactocentric radius of 150 kpc with Magellan/Megacam. The survey has led to the discovery of $\sim$20 faint satellites to date, plus prominent streams and substructures in two environments that are substantially different from the Local Group, i.e. the Centaurus A group dominated by an elliptical and the loose Sculptor group of galaxies. These discoveries clearly attest to the importance of past and ongoing accretion processes in shaping the halos of these nearby galaxies, and provide the first census of their satellite systems down to an unprecedented $M_V<-8$. The detailed characterization of the stellar content, shape and gradients in the extended halos of Sculptor, Centaurus A, and their dwarf satellites provides key constraints on theoretical models of galaxy formation and evolution.
    No preview · Article · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We map the distribution of dust in M31 at 25pc resolution, using stellar photometry from the Panchromatic Hubble Andromeda Treasury. We develop a new mapping technique that models the NIR color-magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars. The resulting extinction map has >4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. 2014. However, the widely-used Draine & Li (2007) dust models overpredict the observed extinction by a factor of ~2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. (2014). The discrepancy we identify is consistent with similar findings in the Milky Way by the Planck Collaboration (2015), but has a more complex dependence on parameters from the Draine & Li (2007) dust models. We also show that the discrepancy with the Draine et al. (2014) map is lowest where the interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications.
    Preview · Article · Sep 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galactic centre hosts a crowded, dense nuclear star cluster with a half-light radius of 4 pc. Most of the stars in the Galactic centre are cool late-type stars, but there are also >100 hot early-type stars in the central parsec of the Milky Way. These stars are only 3-8 Myr old. Our knowledge of the number and distribution of early-type stars in the Galactic centre is incomplete. Only a few spectroscopic observations have been made beyond a projected distance of 0.5 pc of the Galactic centre. The distribution and kinematics of early-type stars are essential to understand the formation and growth of the nuclear star cluster. We cover the central >4pc^2 of the Galactic centre using the integral-field spectrograph KMOS. We extracted more than 1,000 spectra from individual stars and identified early-type stars based on their spectra. Our data set contains 114 bright early-type stars: 6 have narrow emission lines, 23 are Wolf-Rayet stars, 9 stars have featureless spectra, and 76 are O/B type stars. Our wide-field spectroscopic data confirm that the distribution of young stars is compact, with 90% of the young stars identified within 0.5 pc of the nucleus. We identify 24 new O/B stars primarily at large radii. We estimate photometric masses of the O/B stars and show that the total mass in the young population is >12,000M_sun. The O/B stars all appear to be bound to the Milky Way nuclear star cluster, while less than 30% belong to the clockwise rotating disk. The central concentration of the early-type stars is a strong argument that they have formed in situ. A large part of the young O/B stars is not on the disk, which either means that the early-type stars did not all form on the same disk or that the disk is dissolving rapidly. [abridged]
    Full-text · Article · Sep 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as $S_{\nu}\propto\nu^{\alpha}$) of $\alpha=-0.4\pm0.4$. Our measured flux density of $42\pm4$ microJy/beam at 5.5 GHz implies a radio luminosity ($\nu L_{\nu}$) of 5.8e27 erg/s, significantly higher than any previous radio detection of an accreting white dwarf. Transitional millisecond pulsars, which have the highest radio-to-X-ray flux ratios among accreting neutron stars (still a factor of a few below accreting black holes at the same X-ray luminosity), show distinctly different patterns of X-ray and radio variability than X9. When combined with archival X-ray measurements, our radio detection places 47 Tuc X9 very close to the radio/X-ray correlation for accreting black holes, and we explore the possibility that this source is instead a quiescent stellar-mass black hole X-ray binary. The nature of the donor star is uncertain; although the luminosity of the optical counterpart is consistent with a low-mass main sequence donor star, the mass transfer rate required to produce the high quiescent X-ray luminosity of 1e33 erg/s suggests the system may instead be ultracompact, with an orbital period of order 25 minutes. This is the fourth quiescent black hole candidate discovered to date in a Galactic globular cluster, and the only one with a confirmed accretion signature from its optical/ultraviolet spectrum.
    Preview · Article · Sep 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the ratio (C/M) of carbon-rich to oxygen-rich thermally pulsing asymptotic giant branch(TP-AGB) stars in the disk of M31 using a combination of moderate-resolution optical spectroscopy from the Spectroscopic Landscape of Andromeda's Stellar Halo (SPLASH) survey and six-filter Hubble Space Telescope photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey.Carbon stars were identified spectroscopically. Oxygen-rich M-stars were identifed using three different photometric definitions designed to mimic, and thus evaluate, selection techniques common in the literature. We calculate the C/M ratio as a function of galactocentric radius, present-day gas-phase oxygen abundance, stellar metallicity, age (via proxy defined as the ratio of TP-AGB stars to red giant branch, RGB, stars), and mean star formation rate over the last 400 Myr. We find statistically significant correlations between log(C/M) and all parameters. These trends are consistent across different M-star selection methods, though the fiducial values change. Of particular note is our observed relationship between log(C/M) and stellar metallicity, which is fully consistent with the trend seen across Local Group satellite galaxies. The fact that this trend persists in stellar populations with very different star formation histories indicates that the C/M ratio is governed by stellar properties alone.
    Preview · Article · Jul 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it to be one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near infrared integral field spectrograph Gemini/NIFS, and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3 (HST/WFC3). We use the photometric data to model the shape and stellar mass-to-light ratio (M/L) of the nuclear star cluster. From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H$_2$ 1--0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best fitting tilted ring models of the kinematics of the molecular hydrogen gas contain a black hole with mass $M=4_{-3}^{+8}\times 10^5$ M$_\odot$ (3$\sigma$ uncertainties) embedded in a nuclear star cluster of mass $M=2 \times 10^6$ M$_\odot$. Our black hole mass measurement is in excellent agreement with the reverberation mapping mass estimate of Peterson et al. (2005), but shows some tension with other mass measurement methods based on accretion signals.
    Preview · Article · Jul 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the recent star formation history (SFH) across M31 using optical images taken with the \texit{Hubble Space Telescope} as part of the Panchromatic Hubble Andromeda Treasury (PHAT). We fit the color-magnitude diagrams in ~9000 regions that are ~100 pc $\times$ 100 pc in projected size, covering a 0.5 square degree area (~380 kpc$^2$, deprojected) in the NE quadrant of M31. We show that the SFHs vary significantly on these small spatial scales but that there are also coherent galaxy-wide fluctuations in the SFH back to ~500 Myr, most notably in M31's 10-kpc star-forming ring. We find that the 10-kpc ring is at least 400 Myr old, showing ongoing star formation over the past ~500 Myr. This indicates the presence of molecular gas in the ring over at least 2 dynamical times at this radius. We also find that the ring's position is constant throughout this time, and is stationary at the level of 1 km/s, although there is evidence for broadening of the ring due to diffusion of stars into the disk. Based on existing models of M31's ring features, the lack of evolution in the ring's position makes a purely collisional ring origin highly unlikely. We find that the global SFR has been fairly constant over the last ~500 Myr, though it does show a small increase at 50 Myr that is 1.3 times the average SFR over the past 100 Myr. During the last ~500 Myr, ~60% of all SF occurs in the 10-kpc ring. Finally, we find that in the past 100 Myr, the average SFR over the PHAT survey area is $0.28\pm0.03$ M$_\odot$ yr$^{-1}$ with an average deprojected intensity of $7.3 \times 10^{-4}$ M$_\odot$ yr$^{-1}$ kpc$^{-2}$, which yields a total SFR of ~0.7 M$_\odot$ yr$^{-1}$ when extrapolated to the entire area of M31's disk. This SFR is consistent with measurements from broadband estimates. [abridged]
    Full-text · Article · Apr 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of five Local Volume dwarf galaxies uncovered during a comprehensive archival search for optical counterparts to ultra-compact high velocity clouds (UCHVCs). The UCHVC population of HI clouds are thought to be candidate gas-rich, low mass halos at the edge of the Local Group and beyond, but no comprehensive search for stellar counterparts to these systems has been presented. Careful visual inspection of all publicly available optical and ultraviolet imaging at the position of the UCHVCs revealed six blue, diffuse counterparts with a morphology consistent with a faint dwarf galaxy beyond the Local Group. Optical spectroscopy of all six candidate dwarf counterparts show that five have an H$\alpha$-derived velocity consistent with the coincident HI cloud, confirming their association; the sixth diffuse counterpart is likely a background object. The size and luminosity of the UCHVC dwarfs is consistent with other known Local Volume dwarf irregular galaxies. The gas fraction ($M_{HI}/M_{star}$) of the five dwarfs are generally consistent with that of dwarf irregular galaxies in the Local Volume, although ALFALFA-Dw1 (associated with ALFALFA UCHVC HVC274.68+74.70$-$123) has a very high $M_{HI}/M_{star}$$\sim$40. Despite the heterogenous nature of our search, we demonstrate that the current dwarf companions to UCHVCs are at the edge of detectability due to their low surface brightness, and that deeper searches are likely to find more stellar systems. If more sensitive searches do not reveal further stellar counterparts to UCHVCs, then the dearth of such systems around the Local Group may be in conflict with $\Lambda$CDM simulations.
    Full-text · Article · Mar 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun), observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each cluster's CMD to measure its mass function (MF) slope for stars >2 Msun. For the ensemble of clusters, the distribution of stellar MF slopes is best described by $\Gamma=+1.45^{+0.03}_{-0.06}$ with a very small intrinsic scatter. The data also imply no significant dependencies of the MF slope on cluster age, mass, and size, providing direct observational evidence that the measured MF represents the IMF. This analysis implies that the high-mass IMF slope in M31 clusters is universal with a slope ($\Gamma=+1.45^{+0.03}_{-0.06}$) that is steeper than the canonical Kroupa (+1.30) and Salpeter (+1.35) values. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $\Gamma_{\rm MW} \sim+1.15\pm0.1$ and $\Gamma_{\rm LMC} \sim+1.3\pm0.1$, both with intrinsic scatter of ~0.3-0.4 dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study represents the most robust measurement of the high-mass IMF slope to date. We have grafted the M31 high-mass IMF slope onto widely used sub-solar mass Kroupa and Chabrier IMFs and show that commonly used UV- and Halpha-based star formation rates should be increased by a factor of ~1.3-1.5 and the number of stars with masses >8 Msun are ~25% fewer than expected for a Salpeter/Kroupa IMF. [abridged]
    Full-text · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The stellar kinematics of galactic disks are key to constraining disk formation and evolution processes. In this paper, for the first time, we measure the stellar age-velocity dispersion correlation in the inner 20 kpc (3.5 disk scale lengths) of M31 and show that it is dramatically different from that in the Milky Way. We use optical Hubble Space Telescope/Advanced Camera for Surveys photometry of 5800 individual stars from the Panchromatic Hubble Andromeda Treasury (PHAT) survey and Keck/DEIMOS radial velocity measurements of the same stars from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. We show that the average line-of-sight velocity dispersion is a steadily increasing function of stellar age exterior to R=10 kpc, increasing from 30 km/s for the young upper main sequence stars to 90 km/s for the old red giant branch stars. This monotonic increase implies that a continuous or recurring process contributed to the evolution of the disk. Both the slope and normalization of the dispersion vs. age relation are significantly larger than in the Milky Way, allowing for the possibility that the disk of M31 has had a more violent history than the disk of the Milky Way, more in line with cosmological predictions. We also find evidence for an inhomogeneous distribution of stars from a second kinematical component in addition to the dominant disk component. One of the largest and hottest high-dispersion patches is present in all age bins, and may be the signature of the end of the long bar.
    Preview · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have analyzed new HST/ACS and HST/WFC3 imaging in F475W and F814W of two previously-unobserved fields along the M31 minor axis to confirm our previous constraints on the shape of M31's inner stellar halo. Both of these new datasets reach a depth of at least F814W$<$27 and clearly detect the blue horizontal branch (BHB) of the field as a distinct feature of the color-magnitude diagram. We measure the density of BHB stars and the ratio of BHB to red giant branch stars in each field using identical techniques to our previous work. We find excellent agreement with our previous measurement of a power-law for the 2-D projected surface density with an index of 2.6$^{+0.3}_{-0.2}$ outside of 3 kpc, which flattens to $\alpha <$1.2 inside of 3 kpc. Our findings confirm our previous suggestion that the field BHB stars in M31 are part of the halo population. However, the total halo profile is now known to differ from this BHB profile, which suggests that we have isolated the metal-poor component. This component appears to have an unbroken power-law profile from 3-150 kpc but accounts for only about half of the total halo stellar mass. Discrepancies between the BHB density profile and other measurements of the inner halo are therefore likely due to the different profile of the metal-rich halo component, which is not only steeper than the profile of the met al-poor component, but also has a larger core radius. These profile differences also help to explain the large ratio of BHB/RGB stars in our observations.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We obtained Hubble Space Telescope/Wide Field Camera 3 imaging of a sample of ten of the nearest and brightest nuclear clusters residing in late-type spiral galaxies, in seven bands that span the near-ultraviolet to the near-infrared. Structural properties of the clusters were measured by fitting two-dimensional surface brightness profiles to the images using GALFIT. The clusters exhibit a wide range of structural properties. For six of the ten clusters in our sample, we find changes in the effective radius with wavelength, suggesting radially varying stellar populations. In four of the objects, the effective radius increases with wavelength, indicating the presence of a younger population which is more concentrated than the bulk of the stars in the cluster. However, we find a general decrease in effective radius with wavelength in two of the objects in our sample, which may indicate extended, circumnuclear star formation. We also find a general trend of increasing roundness of the clusters at longer wavelengths, as well as a correlation between the axis ratios of the NCs and their host galaxies. These observations indicate that blue disks aligned with the host galaxy plane are a common feature of nuclear clusters in late-type galaxies, but are difficult to detect in galaxies that are close to face-on. In color-color diagrams spanning the near-UV through the near-IR, most of the clusters lie far from single-burst evolutionary tracks, showing evidence for multi-age populations. Most of the clusters have integrated colors consistent with a mix of an old population (> 1 Gyr) and a young population (~100-300 Myr). The wide wavelength coverage of our data provides a sensitivity to populations with a mix of ages that would not be possible to achieve with imaging in optical bands only.
    Preview · Article · Jan 2015 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We construct a stellar cluster catalog for the Panchromatic Hubble Andromeda Treasury (PHAT) survey using image classifications collected from the Andromeda Project citizen science website. We identify 2,753 clusters and 2,270 background galaxies within ~0.5 deg$^2$ of PHAT imaging searched, or ~400 kpc$^2$ in deprojected area at the distance of the Andromeda galaxy (M31). These identifications result from 1.82 million classifications of ~20,000 individual images (totaling ~7 gigapixels) by tens of thousands of volunteers. We show that our crowd-sourced approach, which collects >80 classifications per image, provides a robust, repeatable method of cluster identification. The high spatial resolution Hubble Space Telescope images resolve individual stars in each cluster and are instrumental in the factor of ~6 increase in the number of clusters known within the survey footprint. We measure integrated photometry in six filter passbands, ranging from the near-UV to the near-IR. PHAT clusters span a range of ~8 magnitudes in F475W (g-band) luminosity, equivalent to ~4 decades in cluster mass. We perform catalog completeness analysis using >3000 synthetic cluster simulations to determine robust detection limits and demonstrate that the catalog is 50% complete down to ~500 solar masses for ages <100 Myr. We include catalogs of clusters, background galaxies, remaining unselected candidates, and synthetic cluster simulations, making all information publicly available to the community. The catalog published here serves as the definitive base data product for PHAT cluster science, providing a census of star clusters in an L$^*$ spiral galaxy with unmatched sensitivity and quality.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present central velocity dispersions, masses, mass to light ratios ($M/L$s), and rotation strengths for 25 Galactic globular clusters. We derive radial velocities of 1951 stars in 12 globular clusters from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of $M/L$ with cluster mass and metallicity. The overall values of $M/L$ and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing $M/L$ with cluster mass, and lower than expected $M/L$s for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.
    Preview · Article · Nov 2014 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the central 10 pc of our Galaxy lies a dense cluster of stars, the nuclear star cluster, forming a distinct component of our Galaxy. Nuclear star clusters are common objects and are detected in ∼75% of nearby galaxies. It is, however, not fully understood how nuclear clusters form. Because the Milky Way nuclear star cluster is at a distance of only 8 kpc, we can spatially resolve its stellar populations and kinematics much better than in external galaxies. This makes the Milky Way nuclear star cluster a reference object for understanding the structure and assembly history of all nuclear star clusters.We have obtained an unparalleled data set using the near-infrared long-slit spectrograph ISAAC (VLT) in a novel drift-scan technique to construct an integral-field spectroscopic map of the central ∼10 × 8 pc of our Galaxy. To complement our data set we also observed fields out to a distance of ∼19 pc along the Galactic plane to disentangle the influence of the nuclear stellar disk.From this data set we extract a stellar kinematic map using the CO bandheads and an emission line kinematic map using H2 emission lines. Using the stellar kinematics, we set up a kinematic model for the Milky Way nuclear star cluster to derive its mass and constrain the central Galactic potential. Because the black hole mass in the Milky Way is precisely known, this kinematic data set will also serve as a benchmark for testing black hole mass modeling techniques used in external galaxies.
    Full-text · Article · Oct 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-compact dwarf galaxies are among the densest stellar systems in the Universe. These systems have masses of up to 2 × 10(8) solar masses, but half-light radii of just 3-50 parsecs. Dynamical mass estimates show that many such dwarfs are more massive than expected from their luminosity. It remains unclear whether these high dynamical mass estimates arise because of the presence of supermassive black holes or result from a non-standard stellar initial mass function that causes the average stellar mass to be higher than expected. Here we report adaptive optics kinematic data of the ultra-compact dwarf galaxy M60-UCD1 that show a central velocity dispersion peak exceeding 100 kilometres per second and modest rotation. Dynamical modelling of these data reveals the presence of a supermassive black hole with a mass of 2.1 × 10(7) solar masses. This is 15 per cent of the object's total mass. The high black hole mass and mass fraction suggest that M60-UCD1 is the stripped nucleus of a galaxy. Our analysis also shows that M60-UCD1's stellar mass is consistent with its luminosity, implying a large population of previously unrecognized supermassive black holes in other ultra-compact dwarf galaxies.
    Full-text · Article · Sep 2014 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS) we report the discovery of a pair of faint dwarf galaxies (CenA-MM-Dw1 and CenA-MM-Dw2) at a projected distance of $\sim$90 kpc from the nearby elliptical galaxy NGC5128 (CenA). We measure a tip of the red giant branch distance to each dwarf, finding $D=3.63 \pm 0.41$ Mpc for CenA-MM-Dw1 and $D=3.60 \pm 0.41$ Mpc for CenA-MM-Dw2, both of which are consistent with the distance to NGC5128. A qualitative analysis of the color magnitude diagrams indicates stellar populations consisting of an old, metal-poor red giant branch ($\gtrsim 12$ Gyr, [Fe/H]$\sim-1.7$ to -1.9). In addition, CenA-MM-Dw1 seems to host an intermediate-age population as indicated by its candidate asymptotic giant branch stars. The derived luminosities ($M_V=-10.9\pm0.3$ for CenA-MM-Dw1 and $-8.4\pm0.6$ for CenA-MM-Dw2) and half-light radii ($r_{h}=1.4\pm0.04$ kpc for CenA-MM-Dw1 and $0.36\pm0.08$ kpc for CenA-MM-Dw2) are consistent with those of Local Group dwarfs. CenA-MM-Dw1's low central surface brightness ($\mu_{V,0}=27.3\pm0.1$ mag/arcsec$^2$) places it among the faintest and most extended M31 satellites. Most intriguingly, CenA-MM-Dw1 and CenA-MM-Dw2 have a projected separation of only 3 arcmin ($\sim3$ kpc): we are possibly observing the first, faint satellite of a satellite in an external group of galaxies.
    Preview · Article · Sep 2014 · The Astrophysical Journal Letters

Publication Stats

2k Citations
555.43 Total Impact Points

Institutions

  • 2011-2015
    • University of Utah
      • Department of Physics and Astronomy
      Salt Lake City, Utah, United States
  • 2014
    • Ghent University
      Gand, Flanders, Belgium
    • Space Telescope Science Institute
      Baltimore, Maryland, United States
  • 2006-2011
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2003-2008
    • University of Washington Seattle
      • Department of Astronomy
      Seattle, WA, United States