Andrew N J McKenzie

MRC Cognition and Brain Sciences Unit, Cambridge, England, United Kingdom

Are you Andrew N J McKenzie?

Claim your profile

Publications (169)1523.18 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Chronic rhinosinusitis with nasal polyposis (CRSwNP) in Western countries is characterized by eosinophilia, IgE production, and TH2 cytokine expression. Type 2 innate lymphoid cells from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33, although the relevance of this axis to local mucosal T-cell responses is unknown. Objective: We sought to investigate the role of the IL-25/IL-33 axis in local mucosal T-cell responses in patients with CRSwNP. Methods: Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsy specimens and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T-cell surface phenotype/intracellular cytokines were assessed by means of flow cytometry. T-cell receptor variable β-chain analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. Results: IL-25 receptor (IL-17RB)-expressing TH2 effector cells were identified in nasal polyp tissue but not the healthy nasal mucosa or periphery. IL-17RB(+)CD4(+) polyp-derived TH2 cells coexpressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB(+)CD4(+) T cells, several identical T-cell receptor variable β-chain complementarity-determining region 3 sequences were identified in different subjects, suggesting clonal expansion driven by a common antigen. Abundant IL-17-producing T cells were observed in both healthy nasal mucosal and polyp populations, with TH17-related genes the most overexpressed compared with peripheral blood T cells. Conclusion: IL-25 and IL-33 can interact locally with IL-17RB(+)ST2(+) polyp T cells to augment TH2 responses in patients with CRSwNP. A local TH17 response might be important in healthy nasal mucosal immune homeostasis.
    Full-text · Article · Dec 2015 · The Journal of allergy and clinical immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Group 2 innate lymphoid cells (ILC2) are important in effector functions for eliciting allergic inflammation, parasite defense, epithelial repair, and lipid homeostasis. ILC2 lack rearranged Ag-specific receptors, and although many soluble factors such as cytokines and lipid mediators can influence ILC2, direct interaction of these cells with the microenvironment and other cells has been less explored. Natural cytotoxicity receptors are expressed by subsets of group 1 ILC and group 3 ILC and thought to be important for their effector function, but they have not been shown to be expressed by ILC2. Therefore, we sought to investigate the expression and functional properties of the natural cytotoxicity receptor NKp30 on human ILC2. A subset of ex vivo and cultured ILC2 express NKp30 that upon interaction with its cognate activatory ligand B7-H6 induces rapid production of type 2 cytokines. This interaction can be blocked by NKp30 blocking Ab and an inhibitory ligand, galectin-3. Higher expression of B7-H6 was observed in lesional skin biopsies of patients with atopic dermatitis, and incubation of keratinocytes with proinflammatory and type 2 cytokines upregulated B7-H6, leading to increased ILC2 cytokine production. NKp30-B7-H6 interaction is a novel cell contact mechanism that mediates activation of ILC2 and identifies a potential target for the development of novel therapeutics for atopic dermatitis and other atopic diseases.
    No preview · Article · Nov 2015 · The Journal of Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapid activation of memory CD4(+) T helper 2 (TH2) cells during allergic inflammation requires their recruitment into the affected tissue. Here we demonstrate that group 2 innate lymphoid (ILC2) cells have a crucial role in memory TH2 cell responses, with targeted depletion of ILC2 cells profoundly impairing TH2 cell localization to the lungs and skin of sensitized mice after allergen re-challenge. ILC2-derived interleukin 13 (IL-13) is critical for eliciting production of the TH2 cell-attracting chemokine CCL17 by IRF4(+)CD11b(+)CD103(-) dendritic cells (DCs). Consequently, the sentinel function of DCs is contingent on ILC2 cells for the generation of an efficient memory TH2 cell response. These results elucidate a key innate mechanism in the regulation of the immune memory response to allergens.
    No preview · Article · Nov 2015 · Nature Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Induction of a type 2 cellular response in the white adipose tissue leads to weight loss and improves glucose homeostasis in obese animals. Injection of obese mice with recombinant helminth-derived Schistosoma mansoni egg-derived ω1 (ω1), a potent inducer of type 2 activation, improves metabolic status involving a mechanism reliant upon release of the type 2 initiator cytokine IL-33. IL-33 initiates the accumulation of group 2 innate lymphoid cells (ILC2s), eosinophils, and alternatively activated macrophages in the adipose tissue. IL-33 release from cells in the adipose tissue is mediated by the RNase activity of ω1; however, the ability of ω1 to improve metabolic status is reliant upon effective binding of ω1 to CD206. We demonstrate a novel mechanism for RNase-mediated release of IL-33 inducing ILC2-dependent improvements in the metabolic status of obese animals.- Hams, E., Bermingham, R., Wurlod, F. A., Hogan, A. E., O'Shea, D., Preston, R. J., Rodewald, H.-R., McKenzie, A. N. J., Fallon, P. G. The helminth T2 RNase ω1 promotes metabolic homeostasis in an IL-33 and group 2 innate lymphoid cell-dependent mechanism.
    No preview · Article · Oct 2015 · The FASEB Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5-producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    No preview · Article · Aug 2015 · The Journal of allergy and clinical immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: House dust mite-derived proteases contribute to allergic disorders in part by disrupting epithelial barrier function. Interleukin-33 (IL-33), produced by lung cells after exposure to protease allergens, can induce innate-type airway eosinophilia by activating natural helper (NH) cells, a member of group 2 innate lymphoid cells (ILC2), to secrete Th2 type-cytokines. Because IL-33 also can induce mast cells (MCs) to secrete Th2 type-cytokines, MCs are thought to cooperate with NH cells in enhancing protease or IL-33-mediated innate-type airway eosinophilia. However, we found that MC-deficient Kit(W-sh/W-sh) mice exhibited exacerbated protease-induced lung inflammation associated with reduced numbers of regulatory T (Treg) cells. Moreover, IL-2 produced by IL-33-stimulated MCs promoted expansion of numbers of Treg cells, thereby suppressing development of papain- or IL-33-induced airway eosinophilia. We have thus identified a unique anti-inflammatory pathway that can limit induction of innate-type allergic airway inflammation mediated by NH cells. Copyright © 2015 Elsevier Inc. All rights reserved.
    No preview · Article · Jul 2015 · Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.
    Full-text · Article · Jun 2015 · Nature Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group 2 innate lymphoid cells (ILC2s) are often found associated with mucosal surfaces where they contribute to protective immunity, inappropriate allergic responses, and tissue repair. Although we know they develop from a common lymphoid progenitor in the bone marrow (BM), the specific lineage path and transcriptional regulators that are involved are only starting to emerge. After ILC2 gene expression analysis we investigated the role of Bcl11b, a factor previously linked to T cell commitment, in ILC2 development. Using combined Bcl11b-tom and Id2-gfp reporter mice, we show that Bcl11b is expressed in ILC2 precursors in the BM and maintained in mature ILC2s. In vivo deletion of Bcl11b, by conditional tamoxifen-induced depletion or by Bcl11b−/− fetal liver chimera reconstitution, demonstrates that ILC2s are wholly dependent on Bcl11b for their development. Notably, in the absence of Bcl11b there is a concomitant expansion of the RORγt+ ILC3 population, suggesting that Bcl11b may negatively regulate this lineage. Using Nippostrongylus brasiliensis infection, we reveal that the absence of Bcl11b leads to impaired worm expulsion, caused by a deficit in ILC2s, whereas Citrobacter rodentium infection is cleared efficiently. These data clearly establish Bcl11b as a new factor in the differentiation of ILC2s.
    Preview · Article · Jun 2015 · Journal of Experimental Medicine
  • Gérard Eberl · Marco Colonna · James P Di Santo · Andrew N J McKenzie
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex cross-talk between microenvironment, ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed in order to regulate or enhance immune responses in disease prevention and therapy. Copyright © 2015, American Association for the Advancement of Science.
    No preview · Article · May 2015 · Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.
    Full-text · Article · Apr 2015 · Nature Communications
  • Source
    Alfred W.Y. Lim · Andrew N.J. McKenzie
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphoid cells (ILCs) are increasingly recognised as an innate immune counterpart of adaptive T-helper (TH) cells. In addition to their similar effector cytokine production, there is a strong parallel between the transcription factors that control the differentiation of TH1, TH2 and TH17 cells and ILC groups 1, 2 and 3, respectively. Here, we review the transcriptional circuit that specifies the development of a common ILC progenitor and its subsequent programming into distinct ILC groups. Notch, GATA-3 (GATA-binding protein 3), Nfil3 (nuclear factor interleukin-3) and Id2 (inhibitor of DNA-binding 2) are identified as early factors that suppress B- and T-cell potentials and are turned on in favour of ILC commitment. Natural killer cells, which are the cytotoxic ILCs, develop along a pathway distinct from the rest of the helper-like ILCs that are derived from a common progenitor to all helper-like ILCs (CHILPs). PLZF(-) (promyelocytic leukaemia zinc-finger) CHILPs give rise to lymphoid tissue inducer cells, while PLZF(+) CHILPs have multilineage potential and could give rise to ILCs 1, 2 and 3. Such lineage specificity is dictated by the controlled expression of T-bet (T-box expressed in T cells), RORα (retinoic acid receptor-related orphan nuclear receptor-α), RORγt (retinoic acid receptor-related orphan nuclear receptor-γt) and AHR (aryl hydrocarbon receptor). In addition to the type of transcription factors, the developmental stages at which these factors are expressed are crucial in specifying the fate of the ILCs.Genes and Immunity advance online publication, 22 January 2015; doi:10.1038/gene.2014.83.
    Preview · Article · Jan 2015 · Genes and Immunity
  • [Show abstract] [Hide abstract]
    ABSTRACT: As previous studies suggested that IL-9 may control intestinal barrier function, we tested the role of IL-9 in experimental T cell-mediated colitis induced by the hapten reagent 2,4,6-trinitrobenzenesulfonic acid (TNBS). The deficiency of IL-9 suppressed TNBS-induced colitis and led to lower numbers of PU.1 expressing T cells in the lamia propria, suggesting a regulatory role for Th9 cells in the experimental TNBS colitis model. Since IL-9 is known to functionally alter intestinal barrier function in colonic inflammation, we assessed the expression of tight junction molecules in intestinal epithelial cells of TNBS-inflamed mice. Therefore we made real-time PCR analyses for tight junction molecules in the inflamed colon from wild-type and IL-9 KO mice, immunofluorescent stainings and investigated the expression of junctional proteins directly in intestinal epithelial cells of TNBS-inflamed mice by Western blot studies. The results demonstrated that sealing proteins like occludin were up regulated in the colon of inflamed IL-9 KO mice. In contrast, the tight junction protein Claudin1 showed lower expression levels when IL-9 is absent. Surprisingly, the pore-forming molecule Claudin2 revealed equal expression in TNBS-treated wild-type and IL-9-deficient animals. These results illustrate the pleiotropic functions of IL-9 in changing intestinal permeability in experimental colitis. Thus, modulation of IL-9 function emerges as a new approach for regulating barrier function in intestinal inflammation.
    No preview · Article · Jan 2015

  • No preview · Article · Dec 2014 · Immunology
  • Andrew N J McKenzie
    [Show abstract] [Hide abstract]
    ABSTRACT: Type-2 innate lymphoid cells (ILC2) belong to an expanding family of innate lymphocytes that provide a potent source of immune effector cytokines at the initiation of immune responses. ILC2 arise, under the control of the transcription factors RORα and GATA3, from lymphoid progenitors in the bone marrow, to secrete type-2 cytokines including IL-5 and IL-13. Using experimental models, ILC2 have been implicated in allergic diseases, such as asthma and atopic dermatitis, but also in metabolic homeostasis. Furthermore, recent reports have indicated that ILC2 not only play roles at the initiation of type-2 immunity but can also contribute to chronic pathology, such as fibrosis, and can impact on the priming of the adaptive T-cell response. The identification of ILC2 in patients with allergic dermatitis and allergic rhinitis indicates that these cells may represent new therapeutic targets.
    No preview · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human tuberculosis (TB) is a leading global health threat and still constitutes a major medical challenge. However, mechanisms governing tissue pathology during post-primary TB remain elusive, partly because genetically or immunologically tractable animal models are lacking. In human TB, the demonstration of a large relative increase in interleukin (IL)-4 and IL-13 expression that correlates with lung damage, indicates that a subversive T helper (TH)2 component in the response to Mycobacterium tuberculosis (Mtb) may undermine protective immunity and contribute to reactivation and tissue pathology. Up to now, there is no clear evidence whether IL-4/IL-13-IL-4 receptor-alpha (Rα)-mediated mechanisms may in fact cause reactivation and pathology. Unfortunately, the virtual absence of centrally necrotizing granulomas in experimental murine TB is associated with a poor induction of a TH2 immune response. We therefore hypothesize that in mice, an increased production of IL-13 may lead to a pathology similar to human post-primary TB. In our study, aerosol Mtb infection of IL-13-overexpressing mice in fact resulted in pulmonary centrally necrotizing granulomas with multinucleated giant cells, a hypoxic rim and a perinecrotic collagen capsule with an adjacent zone of lipid-rich, acid-fast bacilli-containing foamy macrophages, thus strongly resembling the pathology in human post-primary TB. Granuloma necrosis (GN) in Mtb-infected IL-13-overexpressing mice was associated with the induction of arginase-1-expressing macrophages. Indirect blockade of the endogenous arginase inhibitor L-hydroxyarginine in Mtb-infected wildtype mice resulted in a strong arginase expression and precipitated a similar pathology of GN. Together, we here introduce an experimental TB model that displays many features of centrally necrotizing granulomas in human post-primary TB and demonstrate that IL-13/IL-4Rα-dependent mechanisms leading to arginase-1 expression are involved in TB-associated tissue pathology.
    Full-text · Article · Nov 2014 · The Journal of Pathology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhinoviruses (RVs), which are the most common cause of virally induced asthma exacerbations, account for much of the burden of asthma in terms of morbidity, mortality, and associated cost. Interleukin-25 (IL-25) activates type 2-driven inflammation and is therefore potentially important in virally induced asthma exacerbations. To investigate this, we examined whether RV-induced IL-25 could contribute to asthma exacerbations. RV-infected cultured asthmatic bronchial epithelial cells exhibited a heightened intrinsic capacity for IL-25 expression, which correlated with donor atopic status. In vivo human IL-25 expression was greater in asthmatics at baseline and during experimental RV infection. In addition, in mice, RV infection induced IL-25 expression and augmented allergen-induced IL-25. Blockade of the IL-25 receptor reduced many RV-induced exacerbation-specific responses including type 2 cytokine expression, mucus production, and recruitment of eosinophils, neutrophils, basophils, and T and non-T type 2 cells. Therefore, asthmatic epithelial cells have an increased intrinsic capacity for expression of a pro-type 2 cytokine in response to a viral infection, and IL-25 is a key mediator of RV-induced exacerbations of pulmonary inflammation.
    Full-text · Article · Oct 2014 · Science translational medicine
  • Andrew N J McKenzie · Hergen Spits · Gerard Eberl
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles throughout the duration of immune responses, participating in the transition from innate to adaptive immunity and contributing to chronic inflammation. The proximity of ILCs to epithelial surfaces and their constitutive strategic positioning in other tissues throughout the body ensures that, in spite of their rarity, ILCs are able to regulate immune homeostasis effectively. Dysregulation of ILC function might result in chronic pathologies such as allergies, autoimmunity, and inflammation. A new role for ILCs in the maintenance of metabolic homeostasis has started to emerge, underlining their importance in fundamental physiological processes beyond infection and immunity.
    No preview · Article · Sep 2014 · Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipid droplets are found in all cell types. Normally present at low levels in the brain, they accumulate in tumours and are associated with neurodegenerative diseases. However, little is known about the mechanisms controlling their homeostasis in the brain. We have found that the longest GRAF1 isoform, GRAF1a, is enriched in the brains of neonates. Endogenous GRAF1a is found on lipid droplets in oleic-acid fed primary glial cells. Exclusive localization requires a GRAF1a-specific hydrophobic segment and two membrane-binding regions, a BAR and a PH domain. Overexpression of GRAF1a promotes lipid droplet clustering, inhibits droplet mobility and severely perturbs lipolysis following the chase of fatty acid-overloaded cells. Under these conditions, GRAF1a concentrates at the interface between lipid droplets. Although GRAF1 knockout mice do not show any gross abnormal phenotype, the total lipid droplet volume that accumulates in GRAF1(-/-) primary glia upon incubation with fatty acids is reduced compared to GRAF1(+/+) cells. These results provide additional insights into the mechanisms contributing to lipid droplet growth in non-adipocyte cells, and suggest that proteins with membrane sculpting BAR domains play a role in droplet homeostasis.
    Preview · Article · Sep 2014 · Journal of Cell Science
  • Source
    Jillian L Barlow · Andrew N J McKenzie
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose of review Recent decades have seen allergic diseases become endemic in a number of developed countries. Understanding the inflammatory processes that dictate these allergic responses is therefore important. Recent findings Critical to many allergic responses is the inappropriate release of the type-2 immune-regulatory cytokines: interleukin-4, interleukin-5, interleukin-9, and interleukin-13. The study of these inflammatory mediators has led directly to the development of two new asthma treatments: anti-interleukin-5 and anti-interleukin-13. Until recently, T helper 2 cells were considered to be the major cellular source of type-2 cytokines; however, a paradigm shift occurred with the discovery of a novel population, type-2 innate lymphoid cells (ILC2s), that can produce huge levels of type-2 cytokines and are sufficient to induce allergy in mice. This discovery raises interesting questions about how innate and adaptive type-2 immunity might interact to induce relapsing and remitting episodes of allergy in patients. Summary It is essential that alongside the mechanistic investigation using model organisms, the roles of ILC2s in human disease be explored. Here, we discuss how ILC2 traits, discovered in mouse models, have informed research in humans and how newly identified human ILC2 pathways might provide potential therapeutic benefits in the future.
    Preview · Article · Aug 2014 · Current Opinion in Allergy and Clinical Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity.
    Full-text · Article · Jul 2014 · Immunity

Publication Stats

13k Citations
1,523.18 Total Impact Points


  • 2015
    • MRC Cognition and Brain Sciences Unit
      Cambridge, England, United Kingdom
    • Molecular and Cellular Biology Program
      • MRC Laboratory of Molecular Biology
      Seattle, Washington, United States
  • 2008-2015
    • Mrc Harwell
      Oxford, England, United Kingdom
    • Cardiff University
      • Department of Medical Biochemistry and Immunology
      Cardiff, WLS, United Kingdom
    • University of Glasgow
      • Institute of Infection, Immunity and Inflammation
      Glasgow, SCT, United Kingdom
  • 2013
    • National Institute of Allergy and Infectious Diseases
      • Laboratory of Parasitic Diseases (LPD)
      베서스다, Maryland, United States
  • 2002-2013
    • Medical Research Council (UK)
      Londinium, England, United Kingdom
    • Indian Broiler (IB) Group India
      Bhānpuri, Chhattisgarh, India
  • 1998-2013
    • University of Cambridge
      • MRC Laboratory of Molecular Biology
      Cambridge, England, United Kingdom
  • 2011
    • Mayo Clinic - Rochester
      • Department of Allergic Diseases
      Rochester, Minnesota, United States
    • WWF United Kingdom
      Londinium, England, United Kingdom
  • 2010
    • University of Cape Town
      • Division of Immunology
      Kaapstad, Western Cape, South Africa
  • 2006
    • MRC Mitochondrial Biology Unit
      Cambridge, England, United Kingdom
  • 2004
    • Trinity College Dublin
      • Biochemistry
      Dublin, L, Ireland
  • 2001
    • Emory University
      • Atlanta Veterans Affairs Medical Center
      Atlanta, Georgia, United States
  • 2000-2001
    • Australian National University
      • Molecular Bioscience Department
      Canberra, Australian Capital Territory, Australia
  • 1999
    • The University of Manchester
      Manchester, England, United Kingdom