Scott Dodelson

University of Chicago, Chicago, Illinois, United States

Are you Scott Dodelson?

Claim your profile

Publications (203)802.96 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).
    Full-text · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CosmoSIS is a modular system for cosmological parameter estimation, based on Markov Chain Monte Carlo and related techniques. It provides a series of samplers, which drive the exploration of the parameter space, and a series of modules, which calculate the likelihood of the observed data for a given physical model, determined by the location of a sample in the parameter space. While CosmoSIS ships with a set of modules that calculate quantities of interest to cosmologists, there is nothing about the framework itself, nor in the Markov Chain Monte Carlo technique, that is specific to cosmology. Thus CosmoSIS could be used for parameter estimation problems in other fields, including HEP. This paper describes the features of CosmoSIS and show an example of its use outside of cosmology. It also discusses how collaborative development strategies differ between two different communities: that of HEP physicists, accustomed to working in large collaborations, and that of cosmologists, who have traditionally not worked in large groups.
    Preview · Article · Dec 2015 · Journal of Physics Conference Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.
    Preview · Article · Dec 2015 · Journal of Physics Conference Series
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg$^{2}$ of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of $z_{\rm med} {\sim} 0.7$, while the CMB lensing kernel is broad and peaks at $z{\sim}2$. The resulting cross-correlation is maximally sensitive to mass fluctuations at $z{\sim}0.44$. Assuming the Planck 2015 best-fit cosmology, the amplitude of the DES$\times$SPT cross-power is found to be $A = 0.88 \pm 0.30$ and that from DES$\times$Planck to be $A = 0.86 \pm 0.39$, where $A=1$ corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of $2.9 \sigma$ and $2.2 \sigma$ respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photometric redshift uncertainty and CMB lensing systematics. Significant intrinsic alignment of galaxy shapes would increase the cross-correlation signal inferred from the data; we calculate a value of $A = 1.08 \pm 0.36$ for DES$\times$SPT when we correct the observations with a simple IA model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation, given the size of the statistical uncertainties and the significant impact of systematic errors, particularly IAs. We provide forecasts for the expected signal-to-noise of the combination of the five-year DES survey and SPT-3G.
    Full-text · Article · Dec 2015
  • Source
    Alessandro Manzotti · Scott Dodelson · Youngsoo Park
    [Show abstract] [Hide abstract]
    ABSTRACT: Planned cosmic microwave background (CMB) experiments can dramatically improve what we know about neutrino physics, inflation, and dark energy. The low level of noise, together with improved angular resolution, will increase the signal to noise of the CMB polarized signal as well as the reconstructed lensing potential of high redshift large scale structure. Projected constraints on cosmological parameters are extremely tight, but these can be improved even further with information from external experiments. Here, we examine quantitatively the extent to which external priors can lead to improvement in projected constraints from a CMB-Stage IV (S4) experiment on neutrino and dark energy properties. We find that CMB S4 constraints on neutrino mass could be strongly enhanced by external constraints on the cold dark matter density $\Omega_{c}h^{2}$ and the Hubble constant $H_{0}$. If polarization on the largest scales ($\ell<50$) will not be measured, an external prior on the primordial amplitude $A_{s}$ or the optical depth $\tau$ will also be important. A CMB constraint on the number of relativistic degrees of freedom, $N_{\rm eff}$, will benefit from an external prior on the spectral index $n_{s}$ and the baryon energy density $\Omega_{b}h^{2}$. Finally, an external prior on $H_{0}$ will help constrain the dark energy equation of state ($w$).
    Preview · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of eight new ultra-faint dwarf galaxy candidates in the second year of optical imaging data from the Dark Energy Survey (DES). Six of these candidates are detected at high confidence, while two additional lower-confidence candidates are identified in regions of incomplete or non-uniform survey coverage. The new stellar systems are found using three independent automated search techniques, and are identified as statistically significant overdensities of individually resolved stars consistent with the isochrone and luminosity function of an old and metal-poor simple stellar population. The new systems are faint (Mv > -4.7 mag) and span a broad range of physical sizes (17 pc < $r_{1/2}$ < 181 pc) and heliocentric distances (25 kpc < D < 214 kpc). All of the new systems have central surface brightnesses (\mu > 27.5 mag arcsec$^2$) consistent with known ultra-faint dwarf galaxies. Roughly half of the DES candidates are more distant, less luminous, and/or have lower surface brightnesses than previously known Milky Way satellite galaxies, and would have had a low probability of detection if observed by the Sloan Digital Sky Survey. A large fraction of satellite candidates are found in the southern half of the DES footprint in proximity to the Magellanic Clouds. We find that the DES data alone exclude (p < 0.001) a spatially isotropic distribution of Milky Way satellites, and that this distribution can be well, although not uniquely, explained by a model in which several of the observed DES satellites are associated with the Magellanic system. Including the current sample, our model predicts that ~100 ultra-faint galaxies with physical properties comparable to the DES satellites might exist over the full sky and that 20-30% of these would be spatially associated with the Magellanic Clouds.
    Full-text · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 < zphot < 1.2, a cross-correlation signal is detected at 6σ and 4σ with SPT and Planck , respectively. We then divide the DES galaxies into five photometric redshift bins, finding significant (>2σ) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as predicted in the Λ cold dark matter Planck cosmology, a 1.7σ deviation.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3\% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find $\sigma_8 (\Omega_{\rm m}/0.3)^{0.5} = 0.81 \pm 0.06$ (68\% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$\% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $\sim$30\% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $\sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ is present regardless of the value of $w$.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7sigma. Cosmological constraints from the measurements in this work are presented in a companion paper (DES et al. 2015).
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. This analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9\%/4.8\% with its first-year data that covered over 1000 square degrees, and to 3.9\%/2.3\% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We cross-match galaxy cluster candidates selected via their Sunyaev–Zel'dovich effect (SZE) signatures in 129.1 deg2 of the South Pole Telescope 2500d SPT-SZ survey with optically identified clusters selected from the Dark Energy Survey science verification data. We identify 25 clusters between 0.1 ≲ z ≲ 0.8 in the union of the SPT-SZ and redMaPPer (RM) samples. RM is an optical cluster finding algorithm that also returns a richness estimate for each cluster. We model the richness λ-mass relation with the following function 〈ln λ|M500〉 ∝ Bλln M500 + Cλln E(z) and use SPT-SZ cluster masses and RM richnesses λ to constrain the parameters. We find $B_\lambda = 1.14^{+0.21}_{-0.18}$ and $C_\lambda =0.73^{+0.77}_{-0.75}$. The associated scatter in mass at fixed richness is $\sigma _{\ln M|\lambda } = 0.18^{+0.08}_{-0.05}$ at a characteristic richness λ = 70. We demonstrate that our model provides an adequate description of the matched sample, showing that the fraction of SPT-SZ-selected clusters with RM counterparts is consistent with expectations and that the fraction of RM-selected clusters with SPT-SZ counterparts is in mild tension with expectation. We model the optical-SZE cluster positional offset distribution with the sum of two Gaussians, showing that it is consistent with a dominant, centrally peaked population and a subdominant population characterized by larger offsets. We also cross-match the RM catalogue with SPT-SZ candidates below the official catalogue threshold significance ξ = 4.5, using the RM catalogue to provide optical confirmation and redshifts for 15 additional clusters with ξ ∈ [4, 4.5].
    Full-text · Article · Jun 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Magellan/M2FS, VLT/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8 +/- 0.5 km/s and a velocity dispersion of 3.3 +/- 0.7 km/s. The mass-to-light ratio of Ret II within its half-light radius is 470 +/- 210 Msun/Lsun, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 km/s, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 +/- 0.09 dex, and we identify several extremely metal-poor stars with [Fe/H] < -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of [Fe/H] = -2.65 +/- 0.07, Ret II matches Segue~1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is log J = 18.8 +/- 0.6 Gev^2/cm^5 within 0.2 degrees, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.
    Full-text · Article · Apr 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters using CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects of several potential sources of systematic error and find that they generally act to reduce the best-fit cluster mass. The net magnitude of the systematic shift to lower cluster mass is approximately the size of our statistical error bar, and we do not attempt to correct for it. We apply the maximum likelihood technique to 513 clusters selected via their SZ signatures in SPT data, and rule out the null hypothesis of no lensing at 3.0$\sigma$. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: $M_{200,\rm{lens}} = 0.76^{+0.37}_{-0.36} M_{200,\rm{SZ}}$ (68% C.L., statistical error only).
    Full-text · Article · Dec 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present details of the construction and characterization of the coaddition of the Sloan Digital Sky Survey (SDSS) Stripe 82 ugriz imaging data. This survey consists of 275 deg2 of repeated scanning by the SDSS camera over –50° ≤ α ≤ 60° and –125 ≤ δ ≤ +125 centered on the Celestial Equator. Each piece of sky has ~20 runs contributing and thus reaches ~2 mag fainter than the SDSS single pass data, i.e., to r ~ 23.5 for galaxies. We discuss the image processing of the coaddition, the modeling of the point-spread function (PSF), the calibration, and the production of standard SDSS catalogs. The data have an r-band median seeing of 1.''1 and are calibrated to ≤1%. Star color-color, number counts, and PSF size versus modeled size plots show that the modeling of the PSF is good enough for precision five-band photometry. Structure in the PSF model versus magnitude plot indicates minor PSF modeling errors, leading to misclassification of stars as galaxies, as verified using VVDS spectroscopy. There are a variety of uses for this wide-angle deep imaging data, including galactic structure, photometric redshift computation, cluster finding and cross wavelength measurements, weak lensing cluster mass calibrations, and cosmic shear measurements.
    Preview · Article · Sep 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in CosmoSIS, including CAMB, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis
    Preview · Article · Sep 2014 · Astronomy and Computing
  • Scott Dodelson · Dragan Huterer

    No preview · Article · Aug 2014 · Astroparticle Physics
  • Source
    A. Manzotti · S. Dodelson
    [Show abstract] [Hide abstract]
    ABSTRACT: On large scales, the anisotropies in the cosmic microwave background (CMB) reflect not only the primordial field but also the energy gain when photons traverse decaying gravitational potentials of large scales structure, the Integrated Sachs-Wolfe (ISW) effect. Decomposing the anisotropy signal into a primordial piece and an ISW component is more urgent than ever as cosmologists strive to understand the Universe on the largest of scales. Here we present a likelihood technique for extracting the ISW signal from measurements of the CMB, the distribution of galaxies, and maps of gravitational lensing. We test this technique first to simulated data and then we apply it to the combination of temperature anisotropies, the lensing map made by the Planck satellite, and the NVSS galaxy survey. We also show projections for upcoming surveys.
    Preview · Article · Jul 2014 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Systematic uncertainties that have been subdominant in past large-scale structure (LSS) surveys are likely to exceed statistical uncertainties of current and future LSS data sets, potentially limiting the extraction of cosmological information. Here we present a general framework (PCA marginalization) to consistently incorporate systematic effects into a likelihood analysis. This technique naturally accounts for degeneracies between nuisance parameters and can substantially reduce the dimension of the parameter space that needs to be sampled. As a practical application, we apply PCA marginalization to account for baryonic physics as an uncertainty in cosmic shear tomography. Specifically, we use CosmoLike to run simulated likelihood analyses on three independent sets of numerical simulations, each covering a wide range of baryonic scenarios differing in cooling, star formation, and feedback mechanisms. We simulate a Stage III (Dark Energy Survey) and Stage IV (Large Synoptic Survey Telescope/Euclid) survey and find a substantial bias in cosmological constraints if baryonic physics is not accounted for. We then show that PCA marginalization (employing at most 3 to 4 nuisance parameters) removes this bias. Our study demonstrates that it is possible to obtain robust, precise constraints on the dark energy equation of state even in the presence of large levels of systematic uncertainty in astrophysical processes. We conclude that the PCA marginalization technique is a powerful, general tool for addressing many of the challenges facing the precision cosmology program.
    Preview · Article · May 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    Scott Dodelson
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent BICEP2 measurement of B-modes in the polarization of the cosmic microwave background suggests that inflation was driven by a field at an energy scale of $2\times 10^{16}$ GeV. I explore the potential of upcoming CMB polarization experiments to further constrain the physics underlying inflation. If the signal is confirmed, then two sets of experiments covering larger area will shed light on inflation. Low resolution measurements can pin down the tensor to scalar ratio at the percent level, thereby distinguishing models from one another. A high angular resolution experiment will be necessary to measure the tilt of the tensor spectrum, testing the consistency relation that relates the tilt to the amplitude.
    Preview · Article · Mar 2014 · Physical Review Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.
    Full-text · Article · Jan 2014

Publication Stats

10k Citations
802.96 Total Impact Points

Institutions

  • 1992-2015
    • University of Chicago
      • • Department of Astronomy and Astrophysics
      • • Enrico Fermi Institute
      Chicago, Illinois, United States
  • 2003-2014
    • University of Washington Seattle
      • Department of Astronomy
      Seattle, Washington, United States
  • 1992-2013
    • Fermi National Accelerator Laboratory (Fermilab)
      • • Center for Particle Astrophysics
      • • Theoretical Physics Department
      Батавия, Illinois, United States
  • 2008
    • University of Pittsburgh
      • Physics and Astronomy
      Pittsburgh, PA, United States
  • 2005
    • Northwestern University
      • Department of Physics and Astronomy
      Evanston, Illinois, United States
  • 2002
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States
  • 2000
    • NASA
      Вашингтон, West Virginia, United States
  • 1995
    • Queen's University
      • Department of Physics, Engineering Physics and Astronomy
      Kingston, Ontario, Canada
  • 1994
    • University of Toronto
      • Canadian Institute for Theoretical Astrophysics
      Toronto, Ontario, Canada
  • 1993
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States
  • 1989-1992
    • Harvard University
      • Department of Physics
      Cambridge, Massachusetts, United States
  • 1988
    • Columbia University
      • Department of Physics
      New York City, NY, United States