Prasanthi Kandula

University of Missouri - Kansas City, Kansas City, Missouri, United States

Are you Prasanthi Kandula?

Claim your profile

Publications (2)5.41 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The polycystin family of transient receptor potential (TRP) channels form Ca(2+) regulated cation channels with distinct subcellullar localizations and functions. As part of heteromultimeric channels and multi-protein complexes, polycystins control intracellular Ca(2+) signals and more generally the translation of extracellular signals and stimuli to intracellular responses. Polycystin-2 channels have been cloned from retina, but their distribution and function in retinal ganglion cells (RGCs) have not yet been established. In the present study, we determined cellular and subcellular localization as well as functional properties of polycystin-2 channels in RGCs. Polycystin-2 expression and distribution in RGCs was assessed by immunohistochemistry on vertical cryostat section of mouse retina as well as primary cultured mouse RGCs, using fluorescence microscopy. Biophysical and pharmacological properties of polycystin-2 channels isolated from primary cultured RGCs were determined using planar lipid bilayer electrophysiology. We detected polycystin-2 immunoreactivity both in the ganglion cell layer as well as in primary cultured RGCs. Subcellular analysis revealed strong cytosolic localization pattern of polycystin-2. Polycystin-2 channel current was Ca(2+) activated, had a maximum slope conductance of 114 pS, and could be blocked in a dose-dependent manner by increasing concentrations of Mg(2+). The cytosolic localization of polycystin-2 in RGCs is in accordance with its function as intracellular Ca(2+) release channel. We conclude that polycystin-2 forms functional channels in RGCs, of which biophysical and pharmacological properties are similar to polycystin-2 channels reported for other tissues and organisms. Our data suggest a potential role for polycystin-2 in RGC Ca(2+) signaling.
    Full-text · Article · Dec 2011 · Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug discovery and development efforts critically rely on cell-based assays for high-throughput screening. These assay systems mostly utilize immortalized cell lines, such as human embryonic kidney cells, and can provide information on cytotoxicity and cell viability, permeability and uptake of compounds as well as receptor pharmacology. While this approach has proven extremely useful for single-target pharmacology, there is an urgent need for neuropharmacological studies to screen novel drug candidates in a cellular environment resembles neurons in vivo more closely, in order to gain insight into the involvement of multiple signaling pathways. Primary cultured neuronal cells, such as cortical neurons, have long been used for basic research and low-throughput screening and assay development, and may thus be suitable candidates for the development of neuropharmacological high-throughput screening approaches. We here developed and optimized protocols for the use of primary cortical neuronal cells in high-throughput assays for neuropharmacology and neuroprotection, including calcium mobilization, cytotoxicity and viability as well as ion channel pharmacology. Our data show low inter-experimental variability and similar reproducibility as conventional cell line assays. We conclude that primary neuronal cultures provide a viable alternative to cell lines in high-throughput assay systems by providing a cellular environment more closely resembling physiological conditions in the central nervous system.
    Full-text · Article · Sep 2011 · Journal of Neuroscience Methods

Publication Stats

9 Citations
5.41 Total Impact Points


  • 2011
    • University of Missouri - Kansas City
      • School of Medicine
      Kansas City, Missouri, United States