Na Ri Kim

Kyungpook National University, Daikyū, Daegu, South Korea

Are you Na Ri Kim?

Claim your profile

Publications (2)5.74 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress such as reactive oxygen species (ROS) within the inflamed joint have been indicated as being involved as inflammatory mediators in the induction of arthritis. Correlations between extracellular- superoxide dismutase (EC-SOD) and inflammatory arthritis have been shown in several animal models of RA. However, there is a question whether the over-expression of EC-SOD on arthritic joint also could suppress the progression of disease or not. In the present study, the effect on the synovial tissue of experimental arthritis was investigated using EC-SOD over-expressing transgenic mice. The over-expression of EC- SOD in joint tissue was confirmed by RT-PCR and immunohistochemistry. The degree of the inflammation in EC-SOD transgenic mice was suppressed in the collagen-induced arthritis model. In a cytokine assay, the production of pro-inflammatory cytokines such as, IL-1β, TNFα, and matrix metalloproteinases (MMPs) was decreased in fibroblast-like synoviocyte (FLS) but not in peripheral blood. Histological examination also showed repressed cartilage destruction and bone in EC-SOD transgenic mice. In conclusion, these data suggest that the over-expression of EC-SOD in FLS contributes to the activation of FLS and protection from joint destruction by depressing the production of the pro-inflammatory cytokines and MMPs. These results provide EC-SOD transgenic mice with a useful animal model for inflammatory arthritis research.
    Full-text · Article · Jun 2012 · Experimental and Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The T-cell receptor (TCR) engages with an antigen and initiates a signaling cascade that leads to the activation of transcription factors. Roquin, a protein encoded by the RC3H1 gene and characterized as an immune regulator, was recently identified as a novel RING-type ubiquitin ligase family member, but the mechanisms by which Roquin regulates T-cell responses are unclear. We used the EL-4 murine lymphoma cell line to elucidate the role of Roquin in vitro. Roquin-overexpressing EL-4 cells became hyper-responsive after anti-CD3/CD28 stimulation in vitro and were a major source of the cytokines IL-2 and TNF-α. Upon activation, these cells showed particularly enhanced production of IL-2 and TNF-α. To clarify the important role played by Roquin in T-cell responses ex vivo, we generated T-cell-specific Roquin transgenic (Tg) mice. Roquin-Tg CD4(+) T-cells showed enhanced production of IL-2 and TNF-α in response to TCR stimulation with anti-CD28 co-stimulation. Further studies are necessary to investigate the role of Roquin in the regulation of primary T-cell activation, survival, and differentiation.
    No preview · Article · Nov 2011 · Biochemical and Biophysical Research Communications