Serena Mazzoni

Università Politecnica delle Marche, Ancona, The Marches, Italy

Are you Serena Mazzoni?

Claim your profile

Publications (7)20.57 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Structural properties and polymorphism of monoolein (MO) in aqueous solutions have been studied for a long time and the final picture can be considered definite. The presence of bicontinuous phases and the ability to encapsulate hydrophilic, hydrophobic and amphiphilic compounds, together with the capability to protect and slowly release the entrapped molecules, designated MO mesophases as good matrices for the sustained release of drugs. Because phase stability, loading efficiency and bioavailability are strongly correlated, the interplay between MO phases and entrapped compounds is worthy of investigation. In this paper, low angle X-ray diffraction has been used to describe the effects of a model protein (the cytochrome-c) on the monoolein cubic phases as a function of both incubation time and protein concentration in the soaking solutions. Results show that the MO polymorphism is strongly modified by the protein, underlying the very large affinity of the cytochrome-c towards monoolein. However, the different phases have a different sensibility to cytochrome-c, as phase transitions occur when the protein amount exceeds some different critical values, probably related to the structure characteristics (2 cytochrome-c per unit cell at the Pn3m to Im3m cubic phase transition and 10-20 cytochrome-c per unit cell at the Im3m to P4332 cubic phase transition). Moreover, although equilibration times resulted to be quite long (more than 10 days), the fraction of cytochrome-c incorporated into the MO phases was very high (up to 20% v/v inside the P4332 cubic phase). Such results are intriguing: even if they may be specific to the cytochrome-c/MO case, the need of assessing the structural characteristics of lipid matrices before their use as drug delivery systems is evident.
    Full-text · Article · Dec 2015 · Langmuir
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Successful bone regeneration using both granules and blocks of biphasic calcium phosphate materials has been reported in the recent literature, in some clinical applications for maxillary sinus elevation, but the long-term kinetics of bone regeneration has still not been fully investigated. Materials and methods: Twenty-four bilateral sinus augmentation procedures were performed and grafted with hydroxyapatite/β-tricalcium phosphate 30/70, 12 with granules and 12 with blocks. The samples were retrieved at different time points and were evaluated for bone regeneration, graft resorption, neovascularization, and morphometric parameters by computed microtomography and histology. Results: A large amount of newly formed bone was detected in the retrieved specimens, together with a good rate of biomaterial resorption and the formation of a homogeneous and rich net of new vessels. The morphometric values were comparable at 5/6 months from grafting but, 9 months after grafting, revealed that the block-based specimens mimicked slightly better than granule-based samples the healthy native bone of the maxillary site. Conclusion: The scaffold morphology was confirmed to influence the long-term kinetics of bone regeneration.
    Full-text · Article · Dec 2015 · Implant dentistry

  • No preview · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, i.e. endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid-polylactic acid scaffolds. 3D images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold.
    Full-text · Article · Jul 2013 · Tissue Engineering Part C Methods
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the key purposes of bone tissue engineering is the development of new biomaterials that can stimulate the body's own regenerative mechanism for patient's anatomical and functional recovery. Bioactive glasses, due to their versatile properties, are excellent candidates to fabricate porous 3-D architectures for bone replacement. In this work, morphological and structural investigations are carried out on Bioglass®- and CEL2-derived scaffolds produced by sponge replication (CEL2 is an experimental glass developed at Politecnico di Torino). Synchrotron radiation X-ray microtomography is used to study the samples 3-D architecture, pores size, shape, distribution and interconnectivity, as well as the growth kinetics on scaffolds struts of a newly formed apatitic phase during in vitro treatment in simulated body fluid, in order to describe from a quantitative viewpoint the bioactive potential of the analyzed biomaterials. An accurate comparison between architectural features and bioactive behaviour of Bioglass®- and CEL2-derived scaffolds is presented and discussed.
    No preview · Article · Apr 2013 · Journal of the European Ceramic Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physico-chemical properties and in vivo efficacies of two nanoparticulate systems delivering the antiparkinsonian drug bromocriptine (BC) were compared in the present study. Monoolein Aqueous Dispersions (MADs) and Nanostructured Lipid Carriers (NLCs) were produced and characterized. Cryogenic transmission electron microscopy (cryo-TEM) and X-ray diffraction revealed the morphology of MAD and NLC. Dimensional distribution was determined by Photon Correlation Spectroscopy (PCS) and Sedimentation Field Flow Fractionation (SdFFF). In particular, BC was shown to be encapsulated with high entrapment efficiency both in MAD and in NLC, according to SdFFF combined with HPLC. Two behavioral tests specific for akinesia (bar test) or akinesia/bradykinesia (drag test) were used to compare the effects of the different BC formulations on motor disabilities in 6-hydroxydopamine hemilesioned rats in vivo, a model of Parkinson's disease. Both free BC and BC-NLC reduced the immobility time in the bar test and enhanced the number of steps in the drag test, although the effects of encapsulated BC were longer lasting (5h). Conversely, BC-MAD was ineffective in the bar test and improved stepping activity in the drag test to a much lower degree than those achieved with the other preparations. We conclude that MAD and NLC can encapsulate BC, although only NLC provide long-lasting therapeutic effects possibly extending BC half-life in vivo.
    No preview · Article · Feb 2012 · European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
  • Source

    Full-text · Article · Jan 2010 · Biophysical Journal