Deeba Khan

Medical University of Vienna, Wien, Vienna, Austria

Are you Deeba Khan?

Claim your profile

Publications (2)6.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Modafinil has been shown to modify behavioural and cognitive functions and to effect several brain receptors. Effects, however, were not observed at the receptor protein complex level and it was therefore the aim of the study to train mice in the multiple T-Maze (MTM) as a paradigm for spatial memory and to determine paralleling brain receptor complex levels. Sixty C57BL/6J mice were used in the study and divided into four groups (trained drug injected; trained vehicle injected; yoked drug injected; yoked vehicle injected). Animals obtained training for 4 days and were killed 6 h following the last training session on day 4. Hippocampi were dissected from the brain, membrane fractions were prepared by ultracentrifugation and were run on blue-native gels and immunoblotted with antibodies against major brain receptors. Modafinil treatment led to decreased latency and increased average speed, but not to changes in pathlength and number of correct decisions in the MTM. Drug effects were modifying receptor complexes of GluR1, GluR2, D2 and NR1. Training effects on receptor complex levels were observed for GluR3, D1 and nicotinic acetylcholine receptor alpha 7 (Nic7). GluR1 levels were correlating with GluR2 and D1 levels were correlating with D2 and NR1. Involvement of the glutamatergic, NMDA, dopaminergic and nicotinergic system in modafinil and memory training were herein described for the first time. A brain receptor complex pattern was revealed showing the concerted action following modafinil treatment.
    No preview · Article · May 2012 · Amino Acids
  • Ajinkya Sase · Deeba Khan · Harald Höger · Gert Lubec
    [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of the hippocampus in pain has been demonstrated but key players, i.e. the major brain receptors have not been shown to be modulated by pain. It was therefore the aim of the study to show the concerted action and pattern of brain receptor complex levels in a non-invasive model of moderate pain. C57BL/6J mice were divided into four groups of 14 animals each: trained injected, trained non-injected, yoked injected and yoked non-injected. Animals were tested in the open field and the elevated plus maze for behavioural evaluation and cognitive functions were tested using the Morris Water Maze. Hippocampi were taken 6 h following sacrification. Membrane proteins were prepared by ultracentrifugation and run on blue native gels to keep the native state, blotted to membranes and western blotting was carried out using the primary antibodies against serotonin receptor 5HT1A, muscarinic acetylcholine receptor M1 (mAChR-M1), nicotinic acetylcholine receptor alpha7 (nAChR-alpha7), glutamate (AMPA) receptor (GluR1) and neurokinin receptor 1 (NK-1). There was no difference between performance in behaviour or in the MWM between groups. Brain receptor level changes involved all receptors given above. Pain affected mAChR-M1, GluR1 and NK-1 complex levels when yoked-injected were compared with yoked non-injected animals. Memory mechanisms affected mAChR-M1 complex levels when trained non-injected animals were compared with yoked non-injected controls. Taken together, the neurochemical basis for testing receptor agonists/antagonists on the role of pain and the hippocampus was generated that may be useful for interpretations of the role of this complex area in moderate pain.
    No preview · Article · Nov 2011 · Amino Acids