Androulla Filippou

ICL, Londinium, England, United Kingdom

Are you Androulla Filippou?

Claim your profile

Publications (5)19.32 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Palm oil that has been interesterified to produce a higher proportion of palmitic acid (16:0) in the sn-2 position reduces postprandial lipemia in young, normolipidemic men and women, but effects in older subjects with higher fasting triacylglycerol (TAG) concentrations are unknown. We tested the hypothesis that high-fat meals rich in interesterified palm olein (IPO) decrease lipemia and alter plasma lipoprotein fraction composition compared to native palm olein (NPO) in men aged 40-70 years with fasting TAG concentrations ≥1.2 mmol/L. Postprandial changes in plasma lipids following meals containing 75 g fat (NPO and IPO) were compared using a randomized, double-blind crossover design (n = 11). Although there were no significant differences in plasma TAG concentrations between meals over the total 6-h postprandial measurement period, IPO resulted in a decreased plasma TAG response during the first 4 h of the postprandial period (iAUC 1.65 mmol/L h, 95 % CI 1.01-2.29) compared to NPO (iAUC 2.33 mmol/L h, 95 % CI 1.58-3.07); meal effect P = 0.024. Chylomicron fraction TAG concentrations at 4-6 h were slightly reduced following IPO compared to NPO [NPO-IPO mean difference 0.29 mmol/L (95 % CI -0.01-0.59), P = 0.055]. There were no differences in IDL fraction TAG, cholesterol or apolipoprotein B48 concentrations following IPO compared with NPO. In conclusion, consuming a meal containing palm olein with a higher proportion of 16:0 in the sn-2 position decreases postprandial lipemia compared to native palm olein during the early phase of the postprandial period in men with higher than optimal fasting triacylglycerol concentrations.
    Full-text · Article · Aug 2014 · Lipids
  • Source
    A Filippou · K-T Teng · S E Berry · T A B Sanders
    [Show abstract] [Hide abstract]
    ABSTRACT: Background/objectives: Dietary triacylglycerols containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. Subjects/Methods: We used a cross-over designed feeding trial in 53 healthy Asian men and women (20–50 years) to test this hypothesis by exchanging 20% energy of palm olein (PO; control) with randomly interesterified PO (IPO) or high oleic acid sunflower oil (HOS). After a 2-week run-in period on PO, participants were fed PO, IPO and HOS for 6 week consecutively in randomly allocated sequences. Fasting (midpoint and endpoint) and postprandial blood at the endpoint following a test meal (3.54 MJ, 14 g protein, 85 g carbohydrate and 50 g fat as PO) were collected for the measurement of C-peptide, insulin, glucose, plasma glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, lipids and apolipoproteins; pre-specified primary and secondary outcomes were postprandial changes in C-peptide and plasma glucose. Results: Low density lipoprotein cholesterol was 0.3 mmol/l (95% confidence interval (95% CI)) 0.1, 0.5; P<0.001) lower on HOS than on PO or IPO as predicted, indicating good compliance to the dietary intervention. There were no significant differences (P=0.58) between diets among the 10 male and 31 female completers in the incremental area under the curve (0–2 h) for C-peptide in nmol.120 min/l: GM (95% CI) were PO 220 (196, 245), IPO 212 (190, 235) and HOS 224 (204, 244). Plasma glucose was 8% lower at 2 h on IPO vs PO and HOS (both P<0.05). Conclusion: Palmitic acid in the sn-2 position does not adversely impair insulin secretion and glucose homeostasis.
    Full-text · Article · Jul 2014 · European Journal of Clinical Nutrition
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/objectives: Dietary triacylglycerols (TAGs) containing palmitic acid in the sn-2 position might impair insulin release and increase plasma glucose. We tested this hypothesis by comparing postprandial responses to fats with varying proportions of palmitic acid in the sn-2 position. Subjects/methods: Using a crossover-designed randomized controlled trial in healthy men (n=25) and women (n=25), we compared four meals on postprandial changes in glucose (primary outcome), insulin, C-peptide, glucose, glucose-dependent insulinotropic polypeptide (GIP) and polypeptide YY (PYY) concentrations. The meals provided 14 g protein, 85 g carbohydrate and 50 g test fat, supplied as high oleic sunflower (HOS) oil (control), palm olein (PO), interesterified palm olein (IPO) and lard containing 0.6, 9.2, 39.1 and 70.5 mol% palmitic acid at sn-2, respectively. Results: No differences in plasma glucose, insulin and C-peptide response between meals were found. GIP release was lower (P<0.001) for IPO and lard compared with HOS and PO meals; the maximal increments (geometric mean and 95% confidence interval) for HOS, PO, IPO and lard were 515 (468, 569), 492 (448, 540), 398 (350, 452) and 395 (364, 429) ng/l, respectively. There was a trend for the postprandial increase in PYY to be lower in women on the IPO and lard meals than those on the HOS and PO meals. Conclusions: Dietary TAGs with an increased proportion of palmitic acid in the sn-2 position do not have acute adverse effects on the insulin and glucose response to meals in healthy men and women, but they decrease GIP release.
    No preview · Article · Mar 2014 · European journal of clinical nutrition
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The triacylglycerol structure of saturated fats may influence postprandial lipemia. We tested the hypothesis that high-fat meals rich in palmitic acid (16:0) in the sn-2 position decrease lipemia. Postprandial changes in plasma lipids, apolipoprotein B48, and cytokines were compared in healthy men (n = 25) and women (n = 25) by using a randomized crossover design after meals that provided 50 g fat supplied as high-oleic sunflower oil (control), palm olein (PO), interesterified palm olein (IPO), and lard containing 0.6, 9.2, 39.1, and 70.5 mol% 16:0, respectively, at sn-2. The sn-2-rich meals elicited different postprandial responses in plasma concentrations of nonesterified fatty acid (meal × time, P = 0.00014), triacylglycerol (meal × time, P = 0.002), and apolipoprotein B48 (meal × time × sex, P = 0.008). Nonesterified fatty acid concentrations were lower up to 3 h after lard and IPO meals than after control or PO meals. Triacylglycerol increased less steeply after lard and IPO meals than after control and PO meals; the incremental AUCs (iAUCs) were 34% (95% CI: 7%, 124%; P < 0.05) and 26% (95% CI: 16%, 132%; P < 0.05) lower after lard than after control and PO meals, respectively. In men, the maximal increment in apolipoprotein B48 was 14% (95% CI: 3%, 25%; P < 0.05) and 16% (95% CI: 2%, 30%; P < 0.05) lower for lard and IPO, respectively, compared with control. The postprandial iAUC in triacylglycerol was 51% lower in women (P = 0.001) than in men. Plasma IL-6 increased postprandially, but IL-8, TNF-α, and E-selectin decreased after all meals. Fats with a higher proportion of palmitic acid in the sn-2 position decrease postprandial lipemia in healthy subjects. This trial was registered at controlled-trials.com as ISRCTN20774126.
    Preview · Article · Dec 2011 · American Journal of Clinical Nutrition
  • Source

    Full-text · Article · Jan 2011 · Proceedings of The Nutrition Society