Rivka Ofir

Ben-Gurion University of the Negev, Be'er Sheva`, Southern District, Israel

Are you Rivka Ofir?

Claim your profile

Publications (67)283.01 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atopic dermatitis is a chronic and recurring inflammatory disease of the skin. This study aimed to evaluate the anti-inflammatory properties of pulichalconoid B, a chalcone that we have isolated from the plant Pulicaria incisa. The in vivo activity of pulichalconoid B was evaluated using the oxazolone model of cutaneous dermatitis and its in vitro activity was studied using isolated splenocytes. Changes in ear thickness, myeloperoxidase activity and production of different cytokines were considered to be indicators of dermal inflammation. Mice that were treated with pulichalconoid B showed a significantly decreased response to delayed-type hypersensitivity induced by oxazolone. Pulichalconoid B significantly reduced oxazolone-induced ear edema, inhibited myeloperoxidase activity and downregulated several cytokines. Pulichalconoid B also inhibited the secretion of cytokines from activated splenocytes. The data suggest that pulichalconoid B may be useful in treating skin inflammations.
    Full-text · Article · Oct 2015 · Israel Journal of Plant Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among the most reputed ancient medical plants was the balm of Gilead known as the apharsemon, identified botanically as Commiphora gileadensis L. This plant originated in the Kingdom of Sheba on the south of the Arabian Peninsala. Apharsemon, known also as the Judean balsam, grew as an agricultural crop only around the Dead Sea Basin in antiquity and achieved fame by its highly reputed aroma and medical properties but has been extinct for many centuries. The resin of this crop was sold at a price twice its weight in gold, the highest price ever paid for an agricultural commodity. This ancient plant was investigated in this study for its anticancerous activity against cancer cell lines. The results obtained from ethanolbased extracts indicated that β-caryophyllene (trans-(1R,9S)-8-methylene-4,11,11- trimethylbicyclo(7.2.0)undec-4-ene) is a key component in the essential oil extracted from the balm of Gilead. β-Caryophyllene can be found in a variety of food and beverage products. In the current paper, we report that Commiphora gileadensis stem and leaf extracts as well as its essential oil have an anti-proliferative proapoptotic effect against tumor cells and not against normal cells. β- caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis plant contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.
    No preview · Article · Jun 2015 · Acta horticulturae
  • Source

    Full-text · Dataset · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation has been implicated in the pathogenesis of various neurodegenerative diseases. During the neuroinflammatory process, microglial cells release neurotoxic and proinflammatory mediators. In the present study, using activity-guided fractionation, we have purified an anti-inflammatory compound determined by spectroscopic methods to be a sesquiterpene lactone named achillolide A from Achillea fragrantissima (Forsk.) Sch. Bip. In primary cultures of lipopolysaccharide-activated microglial cells, achillolide A inhibited the lipopolysaccharide-induced levels of proinflammatory and toxic mediators including glutamate, nitric oxide, matrix metalloproteinase-9, cyclooxygenase-2, induced nitric oxide synthase, interleukin-1β, and tumor necrosis factor-α. Achillolide A also exhibited an antioxidant capacity, as was shown in a cell free system as well as by its ability to reduce intracellular reactive oxygen species levels in microglial cells. Thus, achillolide A might have therapeutic potential for treatment of neurodegenerative diseases and deserves further studies. Georg Thieme Verlag KG Stuttgart · New York.
    Full-text · Article · Feb 2015 · Planta Medica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is tightly involved in various neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and conditions such as ischemia. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support. Therefore, any damage to astrocytes will affect neuronal survival. In a previous study we have demonstrated that an extract prepared from the plant Achillea fragrantissima (Af) prevented the oxidative stress-induced death of astrocytes and attenuated the intracellular accumulation of ROS in astrocytes under oxidative stress. In the present study, using activity guided fractionation, we have purified from this plant the active compound, determined to be a flavonoid named 3,5,4'-trihydroxy-6,7,3'-trimethoxyflavone (TTF). The effects of TTF in any biological system have not been studied previously, and this is the first study to characterize the anti-oxidant and protective effects of this compound in the context of neurodegenerative diseases. Using primary cultures of astrocytes we have found that TTF prevented the hydrogen peroxide (H2O2)-induced death of astrocytes, and attenuated the intracellular accumulation of ROS following treatment of these cells with H2O2 or the peroxyl radicals generating molecule 2,2'-Azobis(amidinopropane) (ABAP). TTF also interfered with cell signaling events and inhibited the phosphorylation of the signaling proteins stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), extracellular signal regulated kinase (ERK 1/2) and mitogen activated protein kinase kinase (MEK1) and the phosphorylation of the transcription factor cyclic AMP response element-binding protein (CREB). The mechanism of the protective effect of TTF against H2O2 -cytotoxicity could not be attributed to a direct H2O2 scavenging but rather to the scavenging of free radicals as was shown in cell free systems. Thus, TTF might be a therapeutic candidate for the prevention/treatment of neurodegenerative diseases where oxidative stress is part of the pathophysiology.
    Full-text · Article · Sep 2014 · Neurochemistry International
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An iron-based cross-dehydrogenative coupling (CDC) approach was applied for the diversity-oriented synthesis of coumestrol-based selective estrogen receptor modulators (SERMs), representing the first application of CDC chemistry in natural product synthesis. The first stage of the two-step synthesis of coumestrol involved a modified aerobic oxidative cross-coupling between ethyl 2-(2,4-dimethoxybenzoyl)acetate and 3-methoxyphenol, with FeCl3 (10 mol %) as the catalyst. The benzofuran coupling product was then subjected to sequential deprotection and lactonization steps, affording the natural product in 59 % overall yield. Based on this new methodology other coumestrol analogues were prepared, and their effects on the proliferation of the estrogen receptor (ER)-dependent MCF-7 and of the ER-independent MDA-MB-231 breast cancer cells were tested. As a result, new types of estrogen receptor ligands having an acetamide group instead of the 9-hydroxyl group of coumestrol were discovered. Both 9-acetamido-coumestrol and 8-acetamidocoumestrol were found more active than the natural product against estrogen-dependent MCF-7 breast cancer cells, with IC50 values of 30 and 9 nM, respectively.
    Full-text · Article · Mar 2014 · Chemistry - A European Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones-pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H2O2-induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.
    Full-text · Article · Aug 2013 · Oxidative Medicine and Cellular Longevity
  • [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, by activity-guided fractionation, we have purified from the desert plant Pulicaria incisa two protective compounds and determined their structures by spectroscopic methods. The compounds were found to be new chalcones—pulichalconoid B and pulichalconoid C. This is the first study to characterize the antioxidant and protective effects of these compounds in any biological system. Using primary cultures of astrocytes, we have found that pulichalconoid B attenuated the accumulation of ROS following treatment of these cells with hydrogen peroxide by 89% and prevented 89% of the H 2 O 2 -induced death of astrocytes. Pulichalconoid B exhibited an antioxidant effect both in vitro and in the cellular antioxidant assay in astrocytes and microglial cells. Pulichalconoid B also caused a fourfold increase in GDNF transcription in these cells. Thus, this chalcone deserves further studies in order to evaluate if beneficial therapeutic effect exists.
    No preview · Dataset · Aug 2013
  • Eli Harlev · Eviatar Nevo · Nitsa Mirsky · Rivka Ofir
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapidly increasing incidence of diabetes mellitus is becoming a serious threat to mankind's health in all parts of the world. In fact, known cases reflect only part of the problem, as many diabetics, especially with type 2 diabetes, are unaware of their disease, which initially shows no definitive symptoms. Despite the great efforts invested in diabetes research, its prevalence continues to grow, while current medications do not cover all of the symptoms and complications of the disease. The present review highlights a plethora of studies focusing on the antidiabetic properties of desert and semidesert (steppic) plants, many of them being used for centuries in traditional medicine by Bedouins living in the arid zones of the Middle East and also by ethnic groups in other arid and semiarid parts of the world. The review concludes in summarizing the work done on the subject and also in pointing to the yet existing gaps in diabetes research of desert and steppic plants, and suggests directions for future exploration.
    No preview · Article · Mar 2013 · Planta Medica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, an infusion prepared from the desert plant Pulicaria incisa (Pi) was tested for its protective and antioxidant effects on astrocytes subjected to oxidative stress. The Pi infusion attenuated the intracellular accumulation of ROS following treatment with hydrogen peroxide and zinc and prevented the H(2)O(2)-induced death of astrocytes. The Pi infusion also exhibited an antioxidant effect in vitro and induced GDNF transcription in astrocytes. It is proposed that this Pi infusion be further evaluated for use as a functional beverage for the prevention and/or treatment of brain injuries and neurodegenerative diseases in which oxidative stress plays a role.
    Full-text · Article · Dec 2012 · Oxidative Medicine and Cellular Longevity

  • No preview · Article · Dec 2012 · Oxidative medicine and cellular longevity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse beta-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased beta-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of beta-globin expression.
    Full-text · Article · Oct 2012 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aloe is a genus of medicinal plants with a notable history of medical use. Basic research over the past couple of decades has begun to reveal the extent of Aloe's pharmaceutical potential, particularly against neoplastic disease. This review looks at Aloe, both the genus and the folk medicine, often being called informally "aloes", and delineates their chemistry and anticancer pharmacognosy. Structures of key compounds are provided, and their pharmacological activities reviewed. Particular attention is given to their free radical scavenging, antiproliferative, and immunostimulatory properties. This review highlights major research directions on aloes, reflecting the enormous potential of natural sources, and of the genus Aloe in particular, in preventing and treating cancer.
    No preview · Article · Apr 2012 · Planta Medica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage.
    Full-text · Article · Apr 2012 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biblical balm of Gilead (Commiphora gileadensis) was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S)-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene) is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.
    Full-text · Article · Apr 2012 · Evidence-based Complementary and Alternative Medicine
  • Source

    Full-text · Chapter · Dec 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuroinflammatory process plays a central role in the initiation and progression of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases, and involves the activation of brain microglial cells. During the neuroinflammatory process, microglial cells release proinflammatory mediators such as cytokines, matrix metalloproteinases (MMP), Reactive oxygen species (ROS) and nitric oxide (NO). In the present study, extracts from 66 different desert plants were tested for their effect on lipopolysaccharide (LPS) - induced production of NO by primary microglial cells. The extract of Achillea fragrantissima (Af), which is a desert plant that has been used for many years in traditional medicine for the treatment of various diseases, was the most efficient extract, and was further studied for additional anti-neuroinflammatory effects in these cells. In the present study, the ethanolic extract prepared from Af was tested for its anti-inflammatory effects on lipopolysaccharide (LPS)-activated primary cultures of brain microglial cells. The levels of the proinflammatory cytokines interleukin1β (IL-1β) and tumor necrosis factor-α (TNFα) secreted by the cells were determined by reverse transcriptase-PCR and Enzyme-linked immunosorbent assay (ELISA), respectively. NO levels secreted by the activate cells were measured using Griess reagent, ROS levels were measured by 2'7'-dichlorofluorescein diacetate (DCF-DA), MMP-9 activity was measured using gel zymography, and the protein levels of the proinflammatory enzymes cyclooxygenase-2 (COX-2) and induced nitric oxide synthase (iNOS) were measured by Western blot analysis. Cell viability was assessed using Lactate dehydrogenase (LDH) activity in the media conditioned by the cells or by the crystal violet cell staining. We have found that out of the 66 desert plants tested, the extract of Af was the most efficient extract and inhibited ~70% of the NO produced by the LPS-activated microglial cells, without affecting cell viability. In addition, this extract inhibited the LPS - elicited expression of the proinflammatory mediators IL-1β, TNFα, MMP-9, COX-2 and iNOS in these cells. Thus, phytochemicals present in the Af extract could be beneficial in preventing/treating neurodegenerative diseases in which neuroinflammation is part of the pathophysiology.
    Full-text · Article · Oct 2011 · BMC Complementary and Alternative Medicine
  • Source

    Full-text · Chapter · Sep 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2.
    Full-text · Article · Sep 2011 · The American Journal of Human Genetics
  • [Show abstract] [Hide abstract]
    ABSTRACT: α-Hederin, a natural triterpene saponin and its derivative kalopanaxsaponin I (ksI) exhibit cytotoxicity against various cancer cell lines and IN VIVO tumors. We studied the genetic variants contributing to the activity of these two anticancer compounds. Cell lines derived from 30 trios of European descent (Centre d'Etude du Polymorphisme Human, CEPH; CEU) and 30 trios of African descent (Yoruban, YRI) were used. Cytotoxicity was determined as inhibition of cell growth at increasing concentrations of α-hederin or ksI for 24 h. In comparison to the European, the Yoruban populations revealed a higher sensitivity to α-hederin and to ksI that can be attributed to several unique SNPs. These SNPs are located near 111 and 130 genes in the European and the Yoruban populations, respectively, raising the possibility that some of these genes contribute to the differential sensitivity to these compounds.
    No preview · Article · Nov 2010 · Planta Medica

Publication Stats

1k Citations
283.01 Total Impact Points

Institutions

  • 1986-2015
    • Ben-Gurion University of the Negev
      • • Faculty of Health Sciences
      • • Department of Chemistry
      • • Shraga Segal Department of Microbiology and Immunology
      Be'er Sheva`, Southern District, Israel
  • 2010-2012
    • Dead Sea-Arava Science Center (DSASC)
      Yerushalayim, Jerusalem, Israel
  • 2009
    • The Open University of Israel
      Tell Afif, Tel Aviv, Israel
  • 2000
    • Royal Melbourne Hospital
      Melbourne, Victoria, Australia