Publications (2)3.97 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: CT-guided transthoracic biopsy is a well-established method in the cytologic or histologic diagnosis of pulmonary lesions. The knowledge of its diagnostic performance and complications for cavitary pulmonary lesions is limited. The purpose of this study was to determine the diagnostic accuracy and safety of CT-guided fine needle aspiration biopsy (FNAB) in cavitary pulmonary lesions. Materials and methods: 102 consecutive patients with pulmonary cavitary lesions received CT-guided FNAB with use of an 18-gauge (n=35) or 20-gauge (n=67) Chiba for histology diagnosis. The sensitivity, specificity, and diagnostic accuracy of FNAB were calculated as compared with the final diagnosis. Complications associated with FNAB were observed. The diagnostic accuracy and complications were compared between patients with different lesion sizes and different cavity wall thickness. Results: The overall sensitivity, specificity, and accuracy of FNAB were 96.3%, 98.0%, and 96.1%, respectively. The sensitivity, specificity, and diagnosis accuracy in different lesion size (< 2 cm vs ≥ 2 cm), or different cavity wall thickness (< 5mm vs ≥ 5 mm) were not different (P>0.05; 0.235). More nondiagnostic sample was found in wall thickness <5mm lesions (P=0.017). Associated complications included pneumothorax in 9 (8.8%) patients and alveolar hemorrhage in 14 patients (13.7%) and hemoptysis in 1 patient (1%). No different rate of complications was found with regard to lesion size, wall thickness, length of the needle path and needle size (P>0.05). Conclusion: CT-guided FNAB can be effectively ad safely used for patients with pulmonary cavitary lesions.
    No preview · Article · Oct 2012 · European journal of radiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The safety of using a cutting needle when performing a core-needle biopsy is of major concern, in particular for small lung tumors or tumors near the hilum. To investigate the usefulness of CT-guided fine needle aspiration biopsy (FNAB) of the lung in obtaining tumor tissue for epidermal growth factor receptor (EGFR) mutation analysis in advanced lung cancer patients. Forty-three patients with stage IIIB-IV lung cancer were enrolled. In all patients, CT-guided FNAB was performed using an 18-gauge or 20-gauge Chiba aspiration needle for histology diagnosis and EGFR mutation analysis. Complications associated with CT-guided FNAB were observed, and the specimen mutational assessments were recorded. The obtained tumor samples ranged from 0.5-1.5 cm in length and were adequate for histological and DNA analyses in all patients. No patient had a pneumothorax or hemoptysis. Minor needle tract bleeding appeared in eight patients. Mutation analysis was satisfactorily demonstrated in 23 mutations and 20 non-mutations. Ten and 13 mutations were identified by 18-gauge and 20-gauge needle biopsies, respectively. EFGR mutations, including 12 cases of EGFR exon 19 deletion and 11 cases of exon 21 point mutation, were present in 21 patients with adenocarcinomas, one with squamous cell carcinoma, and one with undifferentiated carcinoma. CT-guided FNAB is a feasible and safe technique for obtaining lung tumor tissues for EGFR gene mutation analysis.
    No preview · Article · Dec 2011 · Acta Radiologica