Xinjian Zhang

Shandong Academy of Sciences, Chi-nan-shih, Shandong Sheng, China

Are you Xinjian Zhang?

Claim your profile

Publications (5)8.73 Total impact

  • Source
    No preview · Dataset · Sep 2015
  • [Show abstract] [Hide abstract] ABSTRACT: Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research is providing information to elucidate the antibiosis mechanisms and disease suppressive activities of T. afroharzianum and T. gamsii against soilborne fungal and oomycete plant pathogens.
    No preview · Article · Aug 2015 · Functional & Integrative Genomics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-NG-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.
    Full-text · Article · Jan 2015 · Current Microbiology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L(-1)) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L(-1)·d(-1) at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25-30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4-9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg(2+) with Mn(2+), Zn(2+) or Fe(2+) did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.
    Full-text · Article · Oct 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Burkholderia vietnamiensis P418 is a plant growth-promoting rhizobacteria. A chitinase gene from Bacillus subtilis was cloned and stably integrated into the chromosome of using the transposon delivery vector, pUTkm1. Chitinase activity was detected in recombinant P418-37 but not in wild type P418. Recombinant P418-37 retained the in vitro growth rate, N2-fixation and phosphate and potassium-solubilizing characteristics of the wild type. P418-37 significantly (P < 0.05) increased in vitro inhibition of the plant pathogenic fungi Rhizoctonia solani, Fusarium oxysporum f.sp. vasinfectum, Rhizoctonia cerealis, Bipolaris sorokiniana, Verticillium dahliae and Gaeumannomyces graminis var. tritici compared with P418. In planta disease suppression assays indicated that P418-37 significantly (P < 0.05) enhanced suppression of wheat sheath blight (R. cerealis), cotton Fusarium wilt (F. oxysporium f.sp. vasinfectum) and tomato gray mould (Botrytis cinerea), relative to the wild type.
    Full-text · Article · Feb 2012 · Biotechnology Letters