Songqing Tang

Second Military Medical University, Shanghai, Shanghai, Shanghai Shi, China

Are you Songqing Tang?

Claim your profile

Publications (5)71.62 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The key molecular mechanisms that control signaling via T cell antigen receptors (TCRs) remain to be fully elucidated. Here we found that Nrdp1, a ring finger-type E3 ligase, mediated Lys33 (K33)-linked polyubiquitination of the signaling kinase Zap70 and promoted the dephosphorylation of Zap70 by the acidic phosphatase-like proteins Sts1 and Sts2 and thereby terminated early TCR signaling in CD8(+) T cells. Nrdp1 deficiency significantly promoted the activation of naive CD8(+) T cells but not that of naive CD4(+) T cells after engagement of the TCR. Nrdp1 interacted with Zap70 and with Sts1 and Sts2 and connected K33 linkage of Zap70 to Sts1- and Sts2-mediated dephosphorylation. Our study suggests that Nrdp1 terminates early TCR signaling by inactivating Zap70 and provides new mechanistic insights into the non-proteolytic regulation of TCR signaling by E3 ligases.
    No preview · Article · Sep 2015 · Nature Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the expanding knowledge on feedback regulation of Toll-like receptor (TLR) signaling, the feedforward regulation of TLR signaling for the proper innate response to invading microbes is not fully understood. Here, we report that extracellular calcium can coordinate the activation of the small GTPases Ras and Ras-proximate-1 (Rap1) upon TLR stimulation which favors activation of macrophages through a feedforward mechanism. We show that different doses of TLR agonists can trigger different levels of cytokine production, which can be potentiated by extracellular calcium but are impaired by the chelating reagent ethylene glycol tetraacetic acid (EGTA) or by knockdown of stromal interaction molecule 1 (STIM1). Upon TLR engagement, GTP-bound Ras levels are increased and GTP-bound Rap1 is decreased, which can be reversed by EGTA-mediated removal of extracellular calcium. Furthermore, we demonstrate that Rap1 knockdown rescues the inhibitory effects of EGTA on the TLR-triggered innate response. Examination of the TLR signaling pathway reveals that extracellular calcium may regulate the TLR response via feedforward activation of the extracellular signal-regulated kinase signaling pathway. Our data suggest that an influx of extracellular calcium, mediated by STIM1-operated calcium channels, may transmit the information about the intensity of extracellular TLR stimuli to initiate innate responses at an appropriate level. Our study may provide mechanistic insight into the feedforward regulation of the TLR-triggered innate immune response.Cellular & Molecular Immunology advance online publication, 17 August 2015; doi:10.1038/cmi.2015.59.
    No preview · Article · Aug 2015 · Cellular & molecular immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response.
    Preview · Article · Aug 2014 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ras-related small GTPases play important roles in cancer. However, the roles of RBJ, a representative of the sixth subfamily of Ras-related small GTPases, in tumorigenesis and tumor progression remain unknown. Here, we report that RBJ is dysregulated in human gastrointestinal cancers and can promote carcinogenesis and tumor progression via nuclear entrapment of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK)1/MEK2 and activation of ERK1/ERK2. Nucleus-localized RBJ interacts with MEK/ERK and prolongs the duration of MEK/ERK activation. Rbj deficiency abrogates nuclear accumulation of MEK1/MEK2, attenuates ERK1/ERK2 activation, and impairs AOM/DSS-induced colonic carcinogenesis. Moreover, Rbj knockdown inhibits growth of established tumors. Our data suggest that RBJ may be an oncogenic Ras-related small GTPase mediating nuclear accumulation of active MEK1/MEK2 in tumor progression.
    Preview · Article · Apr 2014 · Cancer cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The carboxyl terminus of constitutive heat shock cognate 70 (HSC70)-interacting protein (CHIP, also known as Stub1) is a U box-containing E3 ubiquitin ligase that is important for protein quality control. The role of CHIP in innate immunity is not known. Here, we report that CHIP knockdown inhibits Toll-like receptor (TLR) 4- and TLR9-driven signaling, but not TLR3-driven signaling; proinflammatory cytokine and type 1 interferon (IFN) production; and maturation of antigen-presenting cells, including macrophages and dendritic cells. We demonstrate that CHIP can recruit the tyrosine kinase Src and atypical protein kinase C ζ (PKCζ) to the TLR complex, thereby leading to activation of IL-1 receptor-associated kinase 1, TANK-binding kinase 1, and IFN regulatory factors 3 and 7. CHIP acts as an E3 ligase for Src and PKCζ during TLR signaling. CHIP-mediated enhancement of TLR signaling is inhibited by IFNAR deficiency or expression of ubiquitination resistant mutant forms of Src or PKCζ. These findings suggest that CHIP facilitates the formation of a TLR signaling complex by recruiting, ubiquitinating, and activating Src and PKCζ.
    Preview · Article · Sep 2011 · Journal of Experimental Medicine

Publication Stats

44 Citations
71.62 Total Impact Points


  • 2014
    • Second Military Medical University, Shanghai
      • Department of Spine Surgery
      Shanghai, Shanghai Shi, China
  • 2011-2014
    • Zhejiang University
      Hang-hsien, Zhejiang Sheng, China