Michael P Brown

University of Adelaide, Tarndarnya, South Australia, Australia

Are you Michael P Brown?

Claim your profile

Publications (71)369.2 Total impact


  • No preview · Article · Dec 2015 · Australian family physician
  • Source
    Michael P Brown · Eva Bezak · Barry J Allen

    Full-text · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: BRAF mutations are a validated target for cancer therapy. A second-generation BRAF inhibitor with an improved preclinical safety profile (RG7256) was evaluated in a first-in-man study in order to determine the safety, efficacy, pharmacokinetics and pharmacodynamics in patients with BRAF V600-mutated advanced solid tumors. Patients received RG7256 orally over 8 dose levels from 200 mg once a day (QD) to 2400 mg twice a day (BID) (50-, 100- and 150-mg tablets) using a classic 3 + 3 dose escalation design. In total, 45 patients were enrolled; most (87 %) had advanced melanoma (94 % BRAF V600E). RG7256 was rapidly absorbed, with limited accumulation and dose-proportional increase in exposure up to 1950 mg BID. The maximal tolerated dose (MTD) was not reached. The most common drug-related adverse events (AEs) were dyspepsia (20 %), dry skin (18 %), rash (18 %), fatigue (16 %) and nausea (13 %), mainly grade 1. Three patients (7 %) developed cutaneous squamous cell carcinoma. Photosensitivity, arthralgia and increased liver enzyme levels were each observed in only one patient each. Of 44 evaluable patients, 14 (32 %) had a partial response (melanoma and thyroid cancer). At high dose levels (>1200 mg BID), 10 of 16 (63 %) patients had a partial response. A decrease in maximum standardized uptake value (SUVmax) on FDG-PET of ≥25 % was observed in 19 of 37 patients. On-treatment reductions in pERK were documented in eight of ten paired tumor samples. RG7256 has a favorable safety profile compared to other BRAF inhibitors while maintaining clinical activity, and MTD was not reached. The excessive pill burden needed to provide the desired exposure, and thus concerns about patient compliance, limited further development of this agent. Study Identifier: ClinicalTrials.gov (NCT01143753).
    No preview · Article · Aug 2015 · Targeted Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Panobinostat is a radiosensitizing agent and targets the epigenetics of malignancy. This phase I study evaluated the safety and efficacy of combining oral panobinostat with radiotherapy (RT) or chemoradiotherapy (CRT) in patients with inoperable stage III non-small-cell lung cancer. This study had a parallel dose-escalating design combining oral panobinostat twice a week (dose escalations 20, 30, 45 mg) with either palliative RT (group A) or radical CRT (group B) using a standard chemotherapy protocol of cisplatin and etoposide. In group A (RT), nine recruited patients received treatment with oral panobinostat (doses 20, 30, 45 mg) with RT. Two serious adverse events, rapid atrial fibrillation and tracheo-oesophageal fistula, were not attributable to study treatment. The most common grade 3/4 toxicities were thrombocytopenia and lymphopenia, which resolved promptly after cessation of panobinostat. The disease control rate was 66%, the progression-free survival was 3 months and the median overall survival was 9 months. In group B (CRT), panobinostat dose was not escalated beyond 20 mg because of infection-related complications. Serious adverse events included opportunistic infection associated with treatment-related lymphopenia and febrile neutropenia without a source. One patient had cerebral infarct that was not attributed to study treatment. All patients achieved a partial response to treatment. At 33 months of follow-up, all patients were still alive. Panobinostat can be combined with palliative-dose RT at doses up to 45 mg twice a week with tolerable toxicity. Dose-limiting toxicities prevented the dose escalation of the panobinostat with CRT.
    No preview · Article · Aug 2015 · Anti-Cancer Drugs
  • Tessa Gargett · Michael P. Brown

    No preview · Article · Aug 2015 · Cancer Research
  • Source

    Full-text · Dataset · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The capture and activation of individual T cells on functionalised surfaces enables real-time analyses of the magnitude and rhythm of intracellular calcium release. Application of Haarlet transformations generate a calcium flux 'threshold', with the frequency of the 'threshold crossings' correlating with the strength of the original T cell stimulus. These findings represent a new method to evaluate graduations in T cell activation in real time, and at a single-cell level.
    Full-text · Article · Jan 2015 · Scientific Reports
  • Source
    Tessa Gargett · Michael P Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: Chimeric antigen receptor (CAR) T cells are a novel immunotherapy for cancer. To achieve anti-tumor efficacy, these cells must survive, expand, and persist after infusion into patients, functions that are reportedly best achieved by cells with a stem or central-memory rather than effector-memory phenotype. We have developed third-generation CAR T cells specific for the tumor-associated antigen GD2 for use in a phase I clinical trial. We investigated the optimal cell culture conditions for CAR T-cell production, and here we describe the relative effects of 3 activation and cytokine conditions on CAR T-cell expansion, effector function and phenotype. Peripheral blood mononuclear cells were activated by anti-CD3 and anti-CD28 or anti-CD3 and Retronectin. Activated cells were transduced with the CAR-encoding retroviral vector and expanded in either interleukin (IL)-2 or IL-7 and IL-15. Immune phenotype and expansion were tracked throughout the culture, and transduction efficiency, and subsequent GD2-specific effector functions were evaluated by flow cytometry and cytotoxic T lymphocytes assay. CD3/Retronectin stimulation with IL-2 resulted in poorer activation, expansion and Th1 cytokine secretion of CAR T cells than CD3/CD28 stimulation with either IL-2 or IL-7 and IL-15. However, CAR T cells cultured in CD3/CD28/IL7/IL-15 and CD3/Retronectin/IL-2 had superior cytotoxic T lymphocyte activity and a more stem-like phenotype. The combination of CD3 and CD28 with IL-7 and IL-15 gave the best balance of CAR T-cell expansion and potent GD2-specific effector functions while retaining a stem/memory phenotype, and these growth conditions will therefore be used to manufacture CAR T cells for our phase I clinical trial. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
    Full-text · Article · Jan 2015 · Cytotherapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.
    Full-text · Article · Nov 2014 · Journal of immunotherapy (Hagerstown, Md.: 1997)
  • Source
    Tessa Gargett · Michael P Brown
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune modulation has become a central element in many cancer treatments, and T cells genetically engineered to express chimeric antigen receptors (CAR) may provide a new approach to cancer immunotherapy. Autologous CAR T cells that have been re-directed toward tumor-associated antigens (TAA) have shown promising results in phase 1 clinical trials, with some patients undergoing complete tumor regression. However, this T-cell therapy must carefully balance effective T-cell activation, to ensure antitumor activity, with the potential for uncontrolled activation that may produce immunopathology. An inducible Caspase 9 (iCasp9) "safety switch" offers a solution that allows for the removal of inappropriately activated CAR T cells. The induction of iCasp9 depends on the administration of the small molecule dimerizer drug AP1903 and dimerization results in rapid induction of apoptosis in transduced cells, preferentially killing activated cells expressing high levels of transgene. The iCasp9 gene has been incorporated into vectors for use in preclinical studies and demonstrates effective and reliable suicide gene activity in phase 1 clinical trials. A third-generation CAR incorporating iCasp9 re-directs T cells toward the GD2 TAA. GD2 is over-expressed in melanoma and other malignancies of neural crest origin and the safety and activity of these GD2-iCAR T cells will be investigated in CARPETS and other actively recruiting phase 1 trials.
    Full-text · Article · Oct 2014 · Frontiers in Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to conventional cancer treatments is a major problem associated with solid tumours. Tumour hypoxia is associated with a poor prognosis and with poor treatment outcomes; therefore, there is a need for treatments that can kill hypoxic tumour cells. One potential option is targeted α-radioimmunotherapy, as α-particles can directly kill hypoxic tumour cells. The murine monoclonal antibody DAB4 (APOMAB), which binds dead tumour cells after DNA-damaging treatment, was conjugated and radiolabelled with the α-particle-emitting radionuclide thorium-227 (Th). Mice bearing Lewis lung tumours were administered Th-DAB4 alone or after chemotherapy and the tissue biodistribution of the radioimmunoconjugate was examined, as was the effect of these treatments on tumour growth and survival. Th-DAB4 accumulated in the tumour particularly after chemotherapy, whereas the distribution in healthy tissues did not change. Th-DAB4 as a monotherapy increased survival, with more pronounced responses observed when given after chemotherapy. We have shown that targeted α-therapy of necrotic tumour cells with Th-DAB4 had significant and surprising antitumour activity as it would occur only through a cross-fire effect.
    Full-text · Article · Sep 2014 · Nuclear Medicine Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radio-resistant hypoxic tumor cells are significant contributors to the locoregional recurrences and distant metastases that mark failure of radiotherapy. Due to restricted tissue oxygenation, chronically hypoxic tumor cells frequently become necrotic and thus there is often an association between chronically hypoxic and necrotic tumor regions. This simulation study is the first in a series to determine the feasibility of hypoxic cell killing after first targeting adjacent areas of necrosis with either an α- or β-emitting radioimmunoconjugate.
    Full-text · Article · Aug 2014 · Applied Radiation and Isotopes
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decade, the significance of the homeostatic CC chemokine receptor-7 and its ligands CC chemokine ligand-19 (CCL19) and CCL21, in various types of cancer, particularly mammary carcinoma, has been highlighted. The chemokine receptor CCX-CKR is a high-affinity receptor for these chemokine ligands but rather than inducing classical downstream signalling events promoting migration, it instead sequesters and targets its ligands for degradation, and appears to function as a regulator of the bioavailability of these chemokines in vivo. Therefore, in this study, we tested the hypothesis that local regulation of chemokine levels by CCX-CKR expressed on tumours alters tumour growth and metastasis in vivo. Expression of CCX-CKR on 4T1.2 mouse mammary carcinoma cells inhibited orthotopic tumour growth. However, this effect could not be correlated with chemokine scavenging in vivo and was not mediated by host adaptive immunity. Conversely, expression of CCX-CKR on 4T1.2 cells resulted in enhanced spontaneous metastasis and haematogenous metastasis in vivo. In vitro characterisation of the tumourigenicity of CCX-CKR-expressing 4T1.2 cells suggested accelerated epithelial-mesenchymal transition (EMT) revealed by their more invasive and motile character, lower adherence to the extracellular matrix and to each other, and greater resistance to anoikis. Further analysis of CCX-CKR-expressing 4T1.2 cells also revealed that transforming growth factor (TGF)-β1 expression was increased both at mRNA and protein levels leading to enhanced autocrine phosphorylation of Smad 2/3 in these cells. Together, our data show a novel function for the chemokine receptor CCX-CKR as a regulator of TGF-β1 expression and the EMT in breast cancer cells.Immunology and Cell Biology advance online publication, 15 July 2014; doi:10.1038/icb.2014.58.
    No preview · Article · Jul 2014 · Immunology and Cell Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Dabrafenib is a selective, potent ATP-competitive inhibitor of the BRAFV600-mutant kinase that has demonstrated efficacy in clinical trials. We report the rationale for dose selection in the first-in-human study of dabrafenib, including pharmacokinetics, tissue pharmacodynamics, 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) pharmacodynamics, and dose-response relationship. Experimental design: Dabrafenib was administered orally once, twice (BID), or three times daily (TID). Selected dose cohorts were expanded to collect adequate data on safety, pharmacokinetics, or pharmacodynamics. A recommended phase II dose (RP2D) was chosen based on safety, pharmacokinetic, pharmacodynamic, and response data. Results: One hundred and eighty-four patients were enrolled and treated with doses ranging from 12 mg once daily to 300 mg BID in 10 cohorts. Pharmacokinetic assessment of dabrafenib demonstrated a less-than-dose-proportional increase in exposure after repeat dosing above 150 mg BID. Similar to parent drug concentrations, exposure for all metabolites demonstrated less-than-dose-proportional increases. Predicted target inhibition of pERK (>80%) was achieved at 150 mg BID, with a similar magnitude of inhibition at higher doses in BRAFV600 mutation melanoma biopsy samples. Although there was large variability between patients, FDG uptake decreased with higher daily doses in patients with BRAFV600 mutation-positive melanoma. A favorable activity and tolerability profile was demonstrated at 150 mg BID. There was no improvement with TID dosing compared with BID dosing, based on FDG-PET and tumor response analyses in patients with melanoma. Conclusion: The RP2D of dabrafenib was determined to be 150 mg BID after considering multiple factors, including pharmacokinetics, tissue pharmacodynamics, FDG-PET pharmacodynamics, and the dose-response relationship. A maximum tolerated dose for dabrafenib was not determined.
    Full-text · Article · Jun 2014 · Clinical Cancer Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To develop effective combination therapy against pancreatic ductal adenocarcinoma (PDAC) with a combination of chemotherapy, CHK1 inhibition, and EGFR-targeted radioimmunotherapy. Experimental design: Maximum tolerated doses were determined for the combination of gemcitabine, the CHK1 inhibitor PF-477736, and Lutetium-177 ((177)Lu)-labeled anti-EGFR antibody. This triple combination therapy was investigated using PDAC models from well-established cell lines, recently established patient-derived cell lines, and fresh patient-derived xenografts. Tumors were investigated for the accumulation of (177)Lu-anti-EGFR antibody, survival of tumor-initiating cells, induction of DNA damage, cell death, and tumor tissue degeneration. Results: The combination of gemcitabine and CHK1 inhibitor PF-477736 with (177)Lu-anti-EGFR antibody was tolerated in mice. This triplet was effective in established tumors and prevented the recurrence of PDAC in four cell line-derived and one patient-derived xenograft model. This exquisite response was associated with the loss of tumor-initiating cells as measured by flow cytometric analysis and secondary implantation of tumors from treated mice into treatment-naïve mice. Extensive DNA damage, apoptosis, and tumor degeneration were detected in the patient-derived xenograft. Mechanistically, we observed CDC25A stabilization as a result of CHK1 inhibition with consequent inhibition of gemcitabine-induced S-phase arrest as well as a decrease in canonical (ERK1/2 phosphorylation) and noncanonical EGFR signaling (RAD51 degradation) as a result of EGFR inhibition. Conclusions: Our study developed an effective combination therapy against PDAC that has potential in the treatment of PDAC.
    Full-text · Article · May 2014 · Clinical Cancer Research
  • Source
    Michael P Brown · Georgina V Long
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma remains one of the major causes of death related to skin cancers and has been resistant to traditional anticancer therapies. The clinical development of vemurafenib in the treatment of metastatic melanoma with the V600 mutation of the BRAF gene has provided meaningful improvements in the overall survival and progression-free survival of metastatic melanoma patients. However, significant side effects have been noted with this therapy, in particular cutaneous adverse events (AEs) such as rashes, squamous cell carcinoma and severe photosensitivity to UVA light among others. With an emphasis on the Australian perspective, this review provides an overview of the clinical development of vemurafenib, its attendant dose-limiting toxicities and other AEs, recommendations for safety monitoring, supportive treatments of AEs and dose modifications, with the aim of maximizing the chances of continuing beneficial treatment.
    Full-text · Article · Apr 2014 · Asia-Pacific Journal of Clinical Oncology
  • Michael P Brown · Alexander H Staudacher
    [Show abstract] [Hide abstract]
    ABSTRACT: Evaluation of: Younes A, Connors JM, Park SI et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin's lymphoma: a Phase 1, open-label, dose-escalation study. Lancet Oncol. 14(13), 1348-1356 (2013). With exceptionally high response rates, the CD30-directed antibody-drug conjugate brentuximab vedotin (BV) was US FDA approved for treatment of patients with relapsed/refractory Hodgkin lymphoma (HL). Now in Phase I clinical trial, it has been shown that combining BV with multiagent chemotherapy (excluding bleomycin) as first-line treatment in HL patients with high-risk disease is feasible. Complete response rates were over 90% and toxicity was manageable. Given that the malignant cell population comprises a minority of HL lesions, and that BV releases a diffusible cytotoxin via a cathepsin B-cleavable linker, we argue that a significant proportion of the antitumor activity of BV can be attributed to bystander cytotoxicity in addition to direct killing of CD30-expressing malignant cells.
    No preview · Article · Apr 2014 · Immunotherapy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early identification of tumor responses to treatment is crucial for devising more effective and safer cancer treatments. No widely applicable, noninvasive method currently exists for specifically detecting tumor cell death after cytotoxic treatment and thus for predicting treatment outcomes. We have further characterized the targeting of the murine monoclonal antibody DAB4 specifically to dead tumor cells in vitro, in vivo, and in clinical samples. We found that sustained DAB4 binding to treated cells was closely associated with markers of intrinsic apoptosis and DNA double-strand break formation. In a competition binding assay, DAB4 bound EL4 murine thymic lymphoma cells in preference to the normal counterpart of murine thymocytes. Defective in vivo clearance of apoptotic cells augmented in vivo accumulation of DAB4 in tumors particularly after chemotherapy but was unchanged in normal tissues. Tumor targeting of DAB4 was selective for syngeneic murine tumors and for human tumor xenografts of prostate cancer (PC-3) and pancreatic cancer (Panc-1) before and more so after chemotherapy. Furthermore, DAB4 was shown to bind to dead primary acute lymphoblastic leukemic blasts cultured with cytotoxic drugs and dead epithelial cancer cells isolated from peripheral blood of small cell lung carcinoma patients given chemotherapy. Collectively, these results further demonstrate the selectivity of DAB4 for chemotherapy-induced dead tumor cells. This postchemotherapy selectivity is related to a relative increase in the availability of DAB4-binding targets in tumor tissue rather than in normal tissues. The in vitro findings were translated in vivo to human xenograft models and to ex vivo analyses of clinical samples, providing further evidence of the potential of DAB4 as a marker of tumor cell death after DNA-damaging cytotoxic treatment that could be harnessed as a predictive marker of treatment responses.
    Full-text · Article · Mar 2014 · Journal of Nuclear Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The orally available BRAF kinase inhibitor vemurafenib, compared with dacarbazine, shows improved response rates, progression-free survival (PFS), and overall survival in patients with metastatic melanoma that has a BRAF(V600) mutation. We assessed vemurafenib in patients with advanced metastatic melanoma with BRAF(V600) mutations who had few treatment options. In an open-label, multicentre study, patients with untreated or previously treated melanoma and a BRAF(V600) mutation received oral vemurafenib 960 mg twice a day. The primary endpoint was safety. All analyses were done on the safety population, which included all patients who received at least one dose of vemurafenib. This report is the third interim analysis of this study. This study is registered with ClinicalTrials.gov, number NCT01307397. Between March 1, 2011, and Jan 31, 2013, 3226 patients were enrolled in 44 countries. 3222 patients received at least one dose of vemurafenib (safety population). At data cutoff, 868 (27%) patients were on study treatment and 2354 (73%) had withdrawn, mainly because of disease progression. Common adverse events of all grades included rash (1592 [49%]), arthralgia (1259 [39%]), fatigue (1093 [34%]), photosensitivity reaction (994 [31%]), alopecia (826 [26%]), and nausea (628 [19%]). 1480 (46%) patients reported grade 3 or 4 adverse events, including cutaneous squamous cell carcinoma (389 [12%]), rash (155 [5%]), liver function abnormalities (165 [5%]), arthralgia (106 [3%]), and fatigue (93 [3%]). Grade 3 and 4 adverse events were reported more frequently in patients aged 75 years and older (n=257; 152 [59%, 95% CI 53-65] and ten [4%, 2-7], respectively) than in those younger than 75 years (n=2965; 1286 [43%, 42-45] and 82 [3%, 2-3], respectively). Vemurafenib safety in this diverse population of patients with BRAF(V600) mutated metastatic melanoma, who are more representative of routine clinical practice, was consistent with the safety profile shown in the pivotal trials of this drug. F Hoffmann-La Roche.
    Full-text · Article · Feb 2014 · The Lancet Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lupus-associated (La)-specific murine monoclonal antibody DAB4 (APOMAB(R)) specifically binds dead cancer cells. Using DAB4, we examined La expression in human lung cancer samples to assess its suitability as a cancer-selective therapeutic target. We evaluated the safety and effectiveness of radioimmunotherapy (RIT) using DAB4 radiolabeled with Lutetium-177 (177Lu) in the murine Lewis Lung (LL2) carcinoma model, and determined whether combining RIT with DNA-damaging cisplatin-based chemotherapy, a PARP inhibitor (PARPi), or both alters treatment responses. The expression of La mRNA in human lung cancer samples was analysed using the online database Oncomine, and the protein expression of La was examined using a TissueFocus Cancer Survey Tissue Microarray. The binding of DAB4 to cisplatin-treated LL2 cells was assessed in vitro. LL2 tumour-bearing mice were administered escalating doses of 177Lu-DAB4 alone or in combination with chemotherapy, and tumour growth and survival measured. Biodistribution analysis was used to determine tissue uptake of 177Lu-DAB4 or its isotype control (177Lu-Sal5), when delivered alone or after chemotherapy. PARPi (rucaparib; AG-014699) was combined with chemotherapy and the effects of combined treatment on tumour growth, tumour cell DNA damage and death, and intratumoural DAB4 binding were also analysed. The effect of the triple combination of PARPi, chemotherapy and 177Lu- DAB4 on tumour growth and survival of LL2 tumour-bearing mice was tested. La was over-expressed at both mRNA and protein levels in surgical specimens of human lung cancer and the over-expression of La mRNA conferred a poorer prognosis. DAB4 bound specifically to cisplatin-induced dead LL2 cells in vitro. An anti-tumour dose response was observed when escalating doses of 177Lu-DAB4 were delivered in vivo, with supra-additive responses observed when chemotherapy was combined with 177Lu-DAB4. Combining PARPi with chemotherapy was more effective than chemotherapy alone with increased tumour cell DNA damage and death, and intratumoural DAB4 binding. The combination of PARPi, chemotherapy and 177Lu-DAB4 was well-tolerated and maximised tumour growth delay. The La antigen represents a dead cancer cell-specific target in lung cancer, and DAB4 specifically targeted tumour tissue in vivo, particularly after chemotherapy. Tumour uptake of DAB4 increased further after the combination of PARPi and chemotherapy, which generated new dead tumour cell-binding targets. Consequently, combining 177Lu-DAB4 with PARPi and chemotherapy produced the greatest anti-tumour response. Therefore, the triple combination of PARPi, chemotherapy and RIT may have broad clinical utility.
    Full-text · Article · Jan 2014 · EJNMMI Research

Publication Stats

1k Citations
369.20 Total Impact Points

Institutions

  • 2006-2015
    • University of Adelaide
      • • Discipline of Medicine
      • • School of Medicine
      Tarndarnya, South Australia, Australia
    • University of South Australia
      • School of Pharmacy and Medical Sciences
      Tarndarnya, South Australia, Australia
  • 2001-2015
    • Royal Adelaide Hospital
      • Department of Medical Oncology
      Tarndarnya, South Australia, Australia
  • 2007
    • Hanson Institute
      Tarndarnya, South Australia, Australia