Gabriel Najarro

Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States

Are you Gabriel Najarro?

Claim your profile

Publications (5)11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Side-stream dark-field microscopy is currently used to directly visualize sublingual microcirculation at the bedside. Our experience has found inherent technical challenges in the image acquisition process. This article presents and assesses a quality assurance method to rate image acquisition quality before analysis. We identified 6 common image capture and analysis problem areas in sublingual side-stream dark-field videos: illumination, duration, focus, content, stability, and pressure. We created the "Microcirculation Image Quality Score" by assigning a score of optimal (0 points), suboptimal but acceptable (1 point), or unacceptable (10 points) to each category (for further details, go to We evaluated 59 videos from a convenience sample of 34 unselected, noncritically ill emergency department patients to create a test set. Two raters, blinded to each other, implemented the score. Any video with a cumulative score of 10 or higher (range, 0-60) was considered unacceptable for further analysis. We created the Microcirculation Image Quality Score and applied it to 59 videos. For this particular set of 59 videos, the mean (SD) passing quality score was 1.68 (0.90), and the mean (SD) failing quality score was 15.74 (6.19), with 27 of 59 passing the quality score less than 10. Highest failure occurred from pressure artifact. The interrater agreement for acceptability was assessed using Cohen κ for each category: illumination (κ = 1.0), duration (κ = 1.0), focus (κ = 0.91), content (κ = 0.76), stability (κ = 0.71), and pressure (κ = 0.82) and overall pass-fail rates (score >10) (κ = 0.66). Our Microcirculation Image Quality Score addresses many of the common areas where video quality can degrade. The criteria introduced are an objective way to assess the quality of image acquisition, with the goal of selecting videos of adequate quality for analysis. The interrater reliability results in our preliminary study suggest that the Microcirculation Image Quality Score is reasonably repeatable between reviewers. Further assessment is warranted.
    No preview · Article · Aug 2013 · Journal of critical care
  • [Show abstract] [Hide abstract]
    ABSTRACT: Contrary to the traditional view of the healthy physiological state as being a single static state, variation in physiologic variables has more recently been suggested to be a key component of the healthy state. Indeed, aging and disease are characterized by a loss of such variability. We apply the conceptual framework of fluctuation-dissipation theory (FDT) to predict the response to a common clinical intervention from historical fluctuations in physiologic time series data. The non-equilibrium FDT relates the response of a system to a perturbation to natural fluctuations in the stationary state of the system. We seek to understand with the FDT a common clinical perturbation, the spontaneous breathing trial (SBT), in which mechanical ventilation is briefly suspended while the patient breathes freely for a period of time. As a stress upon the heart of the patient, the SBT can be characterized as a perturbation of heart rate dynamics. A non-equilibrium, but steady-state FDT allows us to predict the heart rate recovery after the SBT stress. We show that the responses of groups of similar patients to the spontaneous breathing trial can be predicted by this approach. This mathematical framework may serve as part of the basis for personalized critical care.
    No preview · Article · Mar 2013
  • Sharath Cholleti · Gabriel Najarro · Joel Saltz · Timothy Buchman

    No preview · Article · Feb 2013 · Journal of Critical Care
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The non-equilibrium fluctuation dissipation theorem is applied to predict how critically ill patients respond to treatment, based upon data currently collected by standard hospital monitoring devices. This framework is demonstrated on a common procedure in critical care: the spontaneous breathing trial. It is shown that the responses of groups of similar patients to the spontaneous breathing trial can be predicted by the non-equilibrium fluctuation dissipation approach. This mathematical framework, when fully formed and applied to other clinical interventions, may serve as part of the basis for personalized critical care.
    Full-text · Article · Jan 2013 · Physical Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Near-infrared spectroscopy (NIRS) noninvasively measures peripheral tissue oxygen saturation (StO₂). NIRS may be utilized along with a vascular occlusion test, in which limb blood flow is temporarily occluded and released, to quantify a tissue bed's rate of oxygen exchange during ischemia and recovery. The objective of this study was to test the hypothesis that NIRS-derived StO₂ measures (StO₂ initial, StO₂ occlusion and StO₂ recovery) identify patients who are in shock and at increased risk of organ dysfunction (Sequential Organ Failure Assessment (SOFA) score ≥ 2 at 24 hours) and dying in the hospital. This prospective, observational study comprised a convenience sample of three cohorts of adult patients (age > 17 years) at three urban university emergency departments: (1) a septic shock cohort (systolic blood pressure < 90 after fluid challenge; the "SHOCK" cohort, n = 58), (2) a sepsis without shock cohort (the "SEPSIS" cohort, n = 60) and emergency department patients without infection (n = 50). We measured the StO₂ initial, StO₂ occlusion and StO₂ recovery slopes for all patients. Outcomes were sepsis syndrome severity, organ dysfunction (SOFA score at 24 hours) and in-hospital mortality. Among the 168 patients enrolled, mean initial StO₂ was lower in the SHOCK cohort than in the SEPSIS cohort (76% vs 81%), with an impaired occlusion slope (-10.2 and 5.2%/minute vs -13.1 and 4.4%/minute) and an impaired recovery slope (2.4 and 1.6%/second vs 3.9 and 1.7%/second) (P < 0.001 for all). The recovery slope was well-correlated with SOFA score at 24 hours (-0.35; P < 0.001), with a promising area under the curve (AUC) for mortality of 0.81. The occlusion slope correlation with SOFA score at 24 hours was 0.21 (P < 0.02), with a fair mortality AUC of 0.70. The initial StO₂ was significantly but less strongly correlated with SOFA score at 24 hours (-0.18; P < 0.04), with a poor mortality AUC of 0.56. NIRS measurements for the StO₂ initial, StO₂ occlusion and StO₂ recovery slope were abnormal in patients with septic shock compared to sepsis patients. The recovery slope was most strongly associated with organ dysfunction and mortality. Further validation is warranted. NCT01062685.
    Full-text · Article · Sep 2011 · Critical care (London, England)

Publication Stats

48 Citations
11.00 Total Impact Points


  • 2013
    • Beth Israel Deaconess Medical Center
      • Department of Emergency Medicine
      Boston, Massachusetts, United States
    • Emory University
      Atlanta, Georgia, United States
  • 2011
    • Harvard University
      Cambridge, Massachusetts, United States