S Kritzmann

Johannes Gutenberg-Universität Mainz, Mayence, Rheinland-Pfalz, Germany

Are you S Kritzmann?

Claim your profile

Publications (5)6.29 Total impact

  • M Fechir · M Breimhorst · S Kritzmann · C Geber · T Schlereth · B Baier · F Birklein
    [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between the sympathetic nervous system and pain are manifold and still have not been sufficiently characterized. Accordingly, several possible neuronal pathways have been described as being involved in mental stress-induced analgesia. We studied the role of the endogenous opioidergic system in stress-induced analgesia in 14 healthy participants in a double-blind cross-over trial. Naloxone or placebo was applied while electrical pain stimulation was started and electrical current increased. After reaching a constant stimulation at 30 mA, a color word interference test (Stroop task) was performed in a stressful and a non-stressful version. Blood pressure, heart rate and baroreflex sensitivity were continuously recorded to assess autonomic activation. Each participant was tested with naloxone and placebo with a randomized and balanced order of trials. The major results are that the opioid-receptor antagonist naloxone prevented (1) stress-induced reduction of tonic current-induced pain, (2) attenuated the simultaneous activation of the sympathetic nervous system, and (3) reduced the counteraction of sympathetic activation by vagal baroreceptor mechanisms. Thus, the opioidergic system not only modulates nociceptive input but also the interplay with vegetative responses. We conclude that acute stress, sympathetic activation and analgesia might be linked via vagal reflexes, which are disturbed when opioid receptors are blocked. This mechanism might underlie increased perception of noxious stimuli in patients with chronic pain or mood disorders.
    No preview · Article · Jul 2011 · European journal of pain (London, England)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress and thermoregulation both activate the sympathetic nervous system (SNS) but might differently affect pain. Studies investigating possible interactions in patients are problematic because of the high prevalence of SNS disturbances in patients. We therefore analyzed the influence of these different sympathetic challenges on experimentally-induced pain in healthy subjects. SNS was activated in two different ways: by mental stress (Stroop task, mental arithmetic task), and by thermoregulatory stimulation using a water-perfused thermal suit (7 degrees C, 32 degrees C, or 50 degrees C). Attentional effects of the mental stress tasks were controlled by using easy control tasks. Both, stress and thermoregulatory stimuli, robustly activated SNS parameters. However, the patterns of activation were different. While stress co-activated heart rate, blood pressure, peripheral vasoconstriction and sweating, thermal stimulation either increased blood pressure (cold) or heart rate and sweating (warm). Only stress was able to induce a significant reduction of pain. The control tasks neither activated the SNS nor altered pain perception. Our results suggest that (1) different patterns of sympathetic activation can be recorded after stress and thermoregulatory challenges and (2) that only stress is able to interfere with sensation of experimental pain. Whether SNS activation is causally responsible for analgesia needs to be further investigated.
    No preview · Article · Feb 2009 · European journal of pain (London, England)
  • Source
    M Fechir · T Schlereth · T Purat · S Kritzmann · C Geber · T Eberle · M Gamer · F Birklein
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress tasks are used to induce sympathetic nervous system (SNS) arousal. However, the efficacy and the patterns of SNS activation have not been systematically compared between different tasks. Therefore, we analyzed SNS activation during the following stress tasks: Presentation of negative, positive, and – as a control – neutral affective pictures, Color-Word interference test (CWT), mental arithmetic under time limit, singing a song aloud, and giving a spontaneous talk. We examined 11 healthy subjects and recorded the following SNS parameters: Activation of emotional sweating by quantitative sudometry, skin vasoconstriction by laser-Doppler flowmetry, heart rate by ECG, blood pressure by determination of pulse wave transit time (PWTT), and electromyographic (EMG) activity of the trapezius muscle. Moreover, subjective stress ratings were acquired for each task using a visual analog scale. All tasks were felt significantly stressful when compared to viewing neutral pictures. However, SNS activation was not reliable: Affective pictures did not induce a significant SNS response; singing, giving a talk and mental arithmetic selectively increased heart rate and emotional sweating. Only the CWT globally activated the SNS. Regarding all tasks, induction of emotional sweating, increase of heart rate and blood pressure significantly correlated with subjective stress ratings, in contrast to EMG and skin vasoconstriction. Our results show that the activation of the SNS widely varies depending on the stress task. Different stress tasks differently activate the SNS, which is an important finding when considering sympathetic reactions - in clinical situations and in research.
    Full-text · Article · Feb 2008 · The Open Neurology Journal
  • M Fechir · T Schlereth · T Purat · S Kritzmann · M Gamer · M Dieterich · F Birklein

    No preview · Article · Mar 2007 · Klinische Neurophysiologie
  • M Fechir · T Schlereth · S Kritzmann · H Single · M Gamer · M Dieterich · F Birklein

    No preview · Article · Jan 2007 · Aktuelle Neurologie