Steven Kregel

University of Chicago, Chicago, Illinois, United States

Are you Steven Kregel?

Claim your profile

Publications (13)34.31 Total impact

  • Source

    Full-text · Article · Apr 2015 · The Journal of Urology
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND The Androgen Receptor (AR) is a nuclear hormone receptor that functions as a critical oncogene in all stages of prostate cancer progression, including progression to castration-resistance following androgen-deprivation therapy. Thus, identifying and targeting critical AR-regulated genes is one potential method to block castration-resistant cancer proliferation. Of particular importance are transcription factors that regulate stem cell pluripotency; many of these genes are emerging as critical oncogenes in numerous tumor cell types. Of these, Nanog has been previously shown to increase the self-renewal and stem-like properties of prostate cancer cells. Thus, we hypothesized that Nanog is a candidate AR target gene that may impart castration-resistance.METHODS We modulated AR signaling in LNCaP prostate cancer cells and assayed for Nanog expression. Direct AR binding to the NANOG promoter was tested using AR Chromatin Immunoprecipation (ChIP) and analyses of publically available AR ChIP-sequencing data-sets. Nanog over-expressing cells were analyzed for cell growth and cytotoxicity in response to the AR antagonist enzalutamide and the microtubule stabilizing agent docetaxel.RESULTSAR signaling upregulates Nanog mRNA and protein. AR binds directly to the NANOG promoter, and was not identified within 75 kb of the NANOGP8 pseudogene, suggesting the NANOG gene locus was preferentially activated. Nanog overexpression in LNCaP cells increases overall growth, but does not increase resistance to enzalutamide or docetaxel.CONCLUSIONS Nanog is a novel oncogenic AR target gene in prostate cancer cells, and stable expression of Nanog increases proliferation and growth of prostate cancer cells, but not resistance to enzalutamide or docetaxel. Prostate © 2014 Wiley Periodicals, Inc.
    No preview · Article · Nov 2014 · The Prostate
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite new treatments for castrate-resistant prostate cancer (CRPC), the prognosis of patients with CRPC remains bleak due to acquired resistance to androgen receptor (AR)-directed therapy. The glucocorticoid receptor (GR) and AR share several transcriptional targets, including the anti-apoptotic genes serum and g lucocorticoid-regulated kinase 1 (SGK1) and Map kinase phosphatase 1 (MKP1)/dual specificity phosphatase 1 (DUSP1). Because GR expression increases in a subset of primary prostate cancer (PC) following androgen deprivation therapy, we sought to determine whether GR activation can contribute to resistance to AR-directed therapy. We studied CWR-22Rv1 and LAPC4 AR/GR-expressing PC cell lines following treatment with combinations of the androgen R1881, AR antagonist MDV3100, GR agonist dexamethasone, GR antagonists mifepristone and CORT 122928, or the SGK1 inhibitor GSK650394. Cell lines stably expressing GR (NR3C1)-targeted shRNA or ectopic SGK1-Flag were also studied in vivo. GR activation diminished the effects of the AR antagonist MDV3100 on tumor cell viability. In addition, GR activation increased prostate-specific antigen (PSA) secretion and induced SGKI and MKP1/DUSP gene expression. Glucocorticoid-mediated cell viability was diminished by a GR antagonist or by co-treatment with the SGK1 inhibitor GSK650394. In vivo, GR depletion delayed castrate-resistant tumor formation, while SGK1-Flag-overexpressing PC xenografts displayed accelerated castrate-resistant tumor initiation, supporting a role for SGK1 in GR-mediated CRPC progression. We studied several PC models before and following treatment with androgen blockade and found that increased GR expression and activity contributed to tumor-promoting PC cell viability. Increased GR-regulated SGK1 expression appears, at least in part, to mediate enhanced PC cell survival. Therefore, GR and/or SGK1 inhibition may be useful adjuncts to AR blockade for treating CRPC.
    Full-text · Article · Mar 2014 · Hormones and Cancer
  • Yi Cai · Steven Kregel · Donald J Vander Griend
    [Show abstract] [Hide abstract]
    ABSTRACT: Progress in prostate cancer research is severely limited by the availability of human-derived and hormone-naïve model systems, which limit our ability to understand genetic and molecular events underlying prostate disease initiation. Toward developing better model systems for studying human prostate carcinogenesis, we and others have taken advantage of the unique pro-prostatic inductive potential of embryonic rodent prostate stroma, termed urogenital sinus mesenchyme (UGSM). When recombined with certain pluripotent cell populations such as embryonic stem cells, UGSM induces the formation of normal human prostate epithelia in a testosterone-dependent manner. Such a human model system can be used to investigate and experimentally test the ability of candidate prostate cancer susceptibility genes at an accelerated pace compared to typical rodent transgenic studies. Since Human embryonic stem cells (hESCs) can be genetically modified in culture using inducible gene expression or siRNA knock-down vectors prior to tissue recombination, such a model facilitates testing the functional consequences of genes, or combinations of genes, which are thought to promote or prevent carcinogenesis. The technique of isolating pure populations of UGSM cells, however, is challenging and learning often requires someone with previous expertise to personally teach. Moreover, inoculation of cell mixtures under the renal capsule of an immunocompromised host can be technically challenging. Here we outline and illustrate proper isolation of UGSM from rodent embryos and renal capsule implantation of tissue mixtures to form human prostate epithelium. Such an approach, at its current stage, requires in vivo xenografting of embryonic stem cells; future applications could potentially include in vitro gland formation or the use of induced pluripotent stem cell populations (iPSCs).
    No preview · Article · Jul 2013 · Journal of Visualized Experiments
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the adult human prostate CD133 expression is thought to mark rare prostate epithelial stem cells and malignant tumor stem/initiating cells. Such putative stem cell populations are thought to proliferate slowly, but possess unlimited proliferative potential. Based on this, we hypothesized that CD133pos prostate cancer cells proliferate slower than CD133neg cells. Human prostate cancer cell lines were analyzed for CD133 expression and DNA content using flow cytometry. Rates of cell division and DNA synthesis were determined using CFSE cell tracing and BrdU uptake, respectively. Changes in cell cycle distribution and the percentage of CD133pos cells were assayed under conditions of different cell density and AR-pathway modulation. Lastly, we over-expressed lentiviral CD133 to measure whether CD133 regulates the cell cycle. The cell cycle distribution differs between CD133pos and CD133neg cells in all three human prostate cancer cell lines studied. CD133pos cells have a greater proportion of cells in G2 and proliferate faster than CD133neg cells. High cell density increases the percentage of CD133pos cells without changing CD133pos cell cycle progression. Treatment with the AR agonist R1881, or the anti-androgen MDV3100, significantly changed the percentage and proliferation of CD133pos cells. Finally, ectopic over-expression of CD133 had no effect on cell cycle progression. Contrary to our hypothesis, we demonstrate that CD133pos cells proliferate faster than CD133neg cells. This association of CD133 expression with increased cell proliferation is not directly mediated by CD133, suggesting that surface CD133 is a downstream target gene of an undefined pathway controlling cell proliferation. Prostate 73: 724–733, 2013.
    No preview · Article · May 2013 · The Prostate
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite advances in detection and therapy, castration-resistant prostate cancer continues to be a major clinical problem. The aberrant activity of stem cell pathways, and their regulation by the Androgen Receptor (AR), has the potential to provide insight into novel mechanisms and pathways to prevent and treat advanced, castrate-resistant prostate cancers. To this end, we investigated the role of the embryonic stem cell regulator Sox2 [SRY (sex determining region Y)-box 2] in normal and malignant prostate epithelial cells. In the normal prostate, Sox2 is expressed in a portion of basal epithelial cells. Prostate tumors were either Sox2-positive or Sox2-negative, with the percentage of Sox2-positive tumors increasing with Gleason Score and metastases. In the castration-resistant prostate cancer cell line CWR-R1, endogenous expression of Sox2 was repressed by AR signaling, and AR chromatin-IP shows that AR binds the enhancer element within the Sox2 promoter. Likewise, in normal prostate epithelial cells and human embryonic stem cells, increased AR signaling also decreases Sox2 expression. Resistance to the anti-androgen MDV3100 results in a marked increase in Sox2 expression within three prostate cancer cell lines, and in the castration-sensitive LAPC-4 prostate cancer cell line ectopic expression of Sox2 was sufficient to promote castration-resistant tumor formation. Loss of Sox2 expression in the castration-resistant CWR-R1 prostate cancer cell line inhibited cell growth. Up-regulation of Sox2 was not associated with increased CD133 expression but was associated with increased FGF5 (Fibroblast Growth Factor 5) expression. These data propose a model of elevated Sox2 expression due to loss of AR-mediated repression during castration, and consequent castration-resistance via mechanisms not involving induction of canonical embryonic stem cell pathways.
    Full-text · Article · Jan 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Current treatment strategies do not cure most children with recurrent or high-risk disease, underlying the need for novel therapeutic approaches. Retinoic acid has been shown to induce differentiation in a variety of cells including skeletal myoblasts and neuroblasts. In the setting of minimal residual disease, retinoic acid improves survival in neuroblastoma, another poorly differentiated childhood tumor. Whether such an approach is useful for rhabdomyosarcoma has not yet been investigated. Several in vitro studies have demonstrated an appreciable effect of retinoic acid on human RMS cellular proliferation and differentiation. We assessed the efficacy of ATRA on rhabdomyosarcoma, in vitro and in vivo, using cell lines and xenografts. ATRA slowed RMS cell proliferation, and promoted a more differentiated myogenic phenotype in both alveolar and embryonal RMS cell lines. Treatment of cultured murine myoblasts with retinoids increased Myogenin expression, but did not induce cell cycle arrest. Despite the favorable in vitro effects, ATRA failed to delay relapse of minimal residual disease using human RMS xenografts in immuno-suppressed NOD-SCID (NSG) mice. Interestingly, tumors that recurred after ATRA treatment showed evidence of enhanced muscle differentiation. Our results indicate that ATRA could increase the expression of some genes associated with muscle differentiation in rhabdomyosarcoma cells, but there was no benefit of single-agent therapy in an MRD model, likely because cell cycle arrest was uncoupled from the pro-differentiation effects of retinoids.
    Full-text · Article · Jun 2012 · Pediatric Blood & Cancer

  • No preview · Conference Paper · May 2012

  • No preview · Conference Paper · May 2010
  • N Sandbo · S Kregel · NO Dulin

    No preview · Conference Paper · Apr 2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transforming growth factor-beta (TGF-beta) is a cytokine implicated in wound healing and in the pathogenesis of pulmonary fibrosis. TGF-beta stimulates myofibroblast differentiation characterized by expression of contractile smooth muscle (SM)-specific proteins such as SM-alpha-actin. In the present study, we examined the role of serum response factor (SRF) in the mechanism of TGF-beta-induced pulmonary myofibroblast differentiation of human lung fibroblasts (HLF). TGF-beta stimulated SM-alpha-actin expression in HLF, which paralleled with a profound induction of SRF expression and activity. Inhibition of SRF by the pharmacologic SRF inhibitor (CCG-1423), or via adenovirus-mediated transduction of SRF short hairpin RNA (shSRF), blocked the expression of both SRF and SM-alpha-actin in response to TGF-beta without affecting Smad-mediated signaling of TGF-beta. However, forced expression of SRF on its own did not promote SM-alpha-actin expression, whereas expression of the constitutively transactivated SRF fusion protein (SRF-VP16) was sufficient to induce SM-alpha-actin expression, suggesting that both expression and transactivation of SRF are important. Activation of protein kinase A (PKA) by forskolin or iloprost resulted in a significant inhibition of SM-alpha-actin expression induced by TGF-beta, and this was associated with inhibition of both SRF expression and activity, but not of Smad-mediated gene transcription. In summary, this is the first direct demonstration that TGF-beta-induced pulmonary myofibroblast differentiation is mediated by SRF, and that inhibition of myofibroblast differentiation by PKA occurs through down-regulation of SRF expression levels and SRF activity, independent of Smad signaling.
    Full-text · Article · Feb 2009 · American Journal of Respiratory Cell and Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulator of G protein signaling (RGS) proteins are united into a family by the presence of the homologous RGS domain that binds the alpha subunits of heterotrimeric G proteins and accelerates their GTPase activity. A member of this family, RGS3 regulates the signaling mediated by G(q) and G(i) proteins by binding the corresponding Galpha subunits. Here we show that RGS3 interacts with the novel partners Smad2, Smad3, and Smad4-the transcription factors that are activated through a transforming growth factor-beta (TGF-beta) receptor signaling. This interaction is mediated by the region of RGS3 outside of the RGS domain and by Smad's Mad homology 2 domain. Overexpression of RGS3 results in inhibition of Smad-mediated gene transcription. RGS3 does not affect TGF-beta-induced Smad phosphorylation, but it prevents heteromerization of Smad3 with Smad4, which is required for transcriptional activity of Smads. This translates to functional inhibition of TGF-beta-induced myofibroblast differentiation by RGS3. In conclusion, this study identifies a novel, noncanonical role of RGS3 in regulation of TGF-beta signaling through its interaction with Smads and interfering with Smad heteromerization.
    Full-text · Article · Jun 2008 · Molecular pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smooth muscle alpha-actin (SMA) is a cytoskeletal protein characteristic to vascular smooth muscle cells (VSMC), and it serves to facilitate cell contraction and migration. Bacterial lipopolysaccharide (LPS), a major mediator of septic shock secondary to infection, is known to directly affect VSMC. The objective of this study was to investigate the effect of LPS on the expression levels of SMA in VSMC. This study was performed on cultured VSMC derived from human aorta, human coronary artery, or rat aorta. We show that SMA expression in VSMC, induced by endothelin-1 (ET1) or transforming growth factor-beta (TGF-beta), is potently inhibited by a LPS. This parallels a decreased migration of VSMC after LPS treatment. Downregulation of SMA by LPS is not a result of altered signaling of ET1 or TGF-beta receptors, and it is not mediated by canonical (for LPS) mechanisms, such as production of prostaglandins or nitric oxide, or secretion of other endocrine factors. On a molecular level, downregulation of SMA expression by LPS occurs at the level of transcription, as both SMA mRNA levels and SMA promoter activity are inhibited by LPS. The SMA promoter is controlled largely by two major regulatory elements-CArG boxes activated by serum response factor (SRF), and TGF-beta control elements (TCE). LPS does not affect the activity of SRF, but it potently inhibits both basal and inducible TCE activation. We show for the first time that LPS attenuates SMA transcription and protein expression in VSMC likely through inhibition of a TCE element on the SMA promoter.
    Full-text · Article · Jun 2007 · Cardiovascular Research

Publication Stats

135 Citations
34.31 Total Impact Points


  • 2007-2014
    • University of Chicago
      • • Committee on Cancer Biology
      • • Section of Pulmonary and Critical Care Medicine
      • • Department of Medicine
      Chicago, Illinois, United States