Shwan Amen

University of Rostock, Rostock, Mecklenburg-Vorpommern, Germany

Are you Shwan Amen?

Claim your profile

Publications (2)7.95 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of the number of diseased coronary arteries on the mobilization of CD133/45(+) bone marrow-derived circulating progenitor cells (BM-CPCs) in peripheral blood (PB) in patients with ischemic heart disease (IHD) was analyzed. Mobilization of CD133/45(+) BM-CPCs by flow cytometry was measured in 120 patients with coronary 1 vessel (IHD1, n=40), coronary 2 vessel (IHD2, n=40), and coronary 3 vessel disease (IHD3, n=40), and in a control group (n=40). The mobilization of CD133/45(+) BM-CPCs was significantly reduced in patients with IHD compared to the control group (P<0.001). The mobilization of CD133/45(+) BM-CPCs was impaired in patients with IHD3 compared to IHD1 (P<0.001) and to IHD2 (P<0.001). But there was no significant difference in mobilization of CD133/45(+) BM-CPCs between the patients with IHD2 and IHD1 (P=0.35). Moreover, we found significantly reduced CD133/45(+) cell mobilization in patients with a high SYNTAX-Score (SS) compared to a low SS (P<0.001) and an intermediate SS (P<0.001). In subgroup analyzes, we observed a significantly negative correlation between levels of hemoglobin A(1c) and the mobilization of CD133/45(+) BM-CPCs (P=0.001, r=-0.6). The mobilization of CD133/45(+) BM-CPCs in PB is impaired in patients with IHD. This impairment might augment with increased number of diseased coronary arteries. Moreover, mobilization of CD133/45(+) BM-CPCs in ischemic tissue is further impaired by diabetes in patients with IHD.
    No preview · Article · Aug 2011 · Circulation Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autologous bone marrow cell transplantation (BMCs-Tx) is a promising novel option for treatment of cardiovascular disease. We analysed in a randomized controlled study the influence of the intracoronary autologous freshly isolated BMCs-Tx on the mobilization of bone marrow-derived circulating progenitor cells (BM-CPCs) in patients with acute myocardial infarction (AMI). Sixty-two patients with AMI were randomized to either freshly isolated BMCs-Tx or to a control group without cell therapy. Peripheral blood (PB) concentrations of CD34/45(+) - and CD133/45(+)-circulating progenitor cells were measured by flow cytometry in 42 AMI patients with cell therapy as well as in 20 AMI patients without cell therapy as a control group on days 1, 3, 5, 7, 8 and 3, 6 as well as 12 months after AMI. Global ejection fraction (EF) and the size of infarct area were determined by left ventriculography. We observed in patients with freshly isolated BMCs-Tx at 3 and 12 months follow up a significant reduction of infarct size and increase of global EF as well as infarct wall movement velocity. The mobilization of CD34/45(+) and CD133/45(+) BM-CPCs significantly increased with a peak on day 7 as compared to baseline after AMI in both groups (CD34/45(+): P < 0.001, CD133/45(+): P < 0.001). Moreover, this significant mobilization of BM-CPCs existed 3, 6 and 12 months after cell therapy compared to day 1 after AMI. In control group, there were no significant differences of CD34/45(+) and CD133/45(+) BM-CPCs mobilization between day 1 and 3, 6 and 12 months after AMI. Intracoronary transplantation of autologous freshly isolated BMCs by use of point of care system in patients with AMI may enhance and prolong the mobilization of CD34/45(+) and CD133/45(+) BM-CPCs in PB and this might increase the regenerative potency after AMI.
    Full-text · Article · Jun 2011 · Journal of Cellular and Molecular Medicine