P.C. Law

Hong Kong Baptist University, Chiu-lung, Kowloon City, Hong Kong

Are you P.C. Law?

Claim your profile

Publications (4)16.73 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study had demonstrated that Astragalus saponins (AST) could reduce the side effects of orthodox chemotherapeutic drugs, while concurrently promote antitumor activity. In the present study, we attempted to investigate the potential synergistic anticarcinogenic effects of AST and a vinca alkaloid vinblastine (VBL). Reduced expression of key proangiogenic and metastatic factors including VEGF, bFGF, metalloproteinase (MMP)-2, and MMP-9 was detected in VBL-treated colon cancer cells, with further downregulation by combined VBL/AST treatment. Subsequently, VBL or AST decreased LoVo cell invasiveness, with further reduction when the drugs were cotreated. Significant growth inhibition and cell cycle arrest at G2/M phase were achieved by either drug treatment with apparent synergistic effects. VBL-induced apoptosis was confirmed but found to be unrelated to induction of the novel apoptotic protein NSAID-activated gene 1. In vivo study in tumor xenograft indicates that combined VBL/AST treatment resulted in sustained regression of tumor growth, with attenuation of the neutropenic and anemic effects of VBL. In addition, downregulation of proangiogenic and proliferative factors was also visualized, with boosting effect by combined drug treatment. These findings have provided evidence that AST combined with adjuvant chemotherapeutics like VBL could alleviate cancer development through diversified modes of action, including the regulation of angiogenesis.
    No preview · Article · Mar 2014 · Nutrition and Cancer
  • Source
    Pui Ching Law · Kathy K Auyeung · Lok Yi Chan · Joshua K Ko
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Our ongoing research has revealed that total saponins extracted from the medicinal herb Radix Astragali (AST) exhibits significant growth-inhibitory and proapoptotic effects in human cancer cells. In the present study, the potential of AST in controlling angiogenesis was further investigated with elaboration of the underlying molecular mechanism in human colon cancer cell and tumor xenograft. Results AST decreased the protein level of VEGF and bFGF in HCT 116 colon cancer cells in a time- and dose-dependent manner. Among the Akt/mTOR signal transduction molecules being examined, AST caused PTEN upregulation, reduction in Akt phosphorylation and subsequent activation of mTOR. AST also suppressed the induction of HIF-1α and VEGF under CoCl2-mimicked hypoxia. These effects were intensified by combined treatment of AST with the mTOR inhibitor rapamycin. Despite this, our data also indicate that AST could attenuate cobalt chloride-evoked COX-2 activation, while such effect on COX-2 and its downstream target VEGF was intensified when indomethacin was concurrently treated. The anti-carcinogenic action of AST was further illustrated in HCT 116 xenografted athymic nude mice. AST significantly suppressed tumor growth and reduced serum VEGF level in vivo. In the tumor tissues excised from AST-treated animals, protein level of p-Akt, p-mTOR, VEGF, VEGFR1 and VEGFR2 was down-regulated. Immunohistochemistry has also revealed that AST effectively reduced the level of COX-2 in tumor sections when compared with that in untreated control. Conclusion Taken together, these findings suggest that AST exerts anti-carcinogenic activity in colon cancer cells through modulation of mTOR signaling and downregulation of COX-2, which together reduce VEGF level in tumor cells that could potentially suppress angiogenesis.
    Preview · Article · Sep 2012 · BMC Complementary and Alternative Medicine
  • K.K. Auyeung · P.K. Woo · P.C. Law · J.K. Ko
    [Show abstract] [Hide abstract]
    ABSTRACT: We had reported that Astragalus saponins (AST) exert promising anti-tumorigenic effects by suppressing the growth of HT-29 human colon cancer cells and tumor xenograft. In the present study, we further investigated the anti-angiogenic property of AST in human gastric adenocarcinoma cells (AGS) and attempted to elucidate the underlying mechanism. Viability of AGS cells was measured by using the MTT reduction method. Western blotting was performed to examine the effect of AST on apoptotic- and cell growth-related protein expression. Effect of AST on cell cycle progression was also evaluated using PI staining. A Matrigel invasion assay was then employed to demonstrate the effect of AST on the invasiveness of gastric cancer cells. The expression of invasion-associated proteins (VEGF and MMPs) was also investigated. AST could induce apoptosis in AGS cells by activating caspase 3 with subsequent cleavage of poly(ADP-ribose) polymerase. Besides, cell cycle arrest at the G2/M phase had been observed in AST-treated cells, leading to substantial growth inhibition. The anti-proliferative effect of AST was associated with the regulation of cyclin B1, p21 and c-myc. Results indicate that the number of AGS cells invaded through the Matrigel membrane was significantly reduced upon AST treatment, with concomitant down-regulation of the pro-angiogenic protein vascular endothelial growth factor (VEGF) as well as the metastatic proteins metalloproteinase (MMP)-2 and MMP-9. AST derived from the medicinal plant Astragalus membranaceus could modulate the invasiveness and angiogenesis of AGS cells besides its pro-apoptotic and anti-proliferative activities. These findings also suggest that AST has the potential to be further developed into an effective chemotherapeutic agent in treating advanced and metastatic gastric cancers.
    No preview · Article · Aug 2011 · Journal of ethnopharmacology
  • J.K. Ko · K.K. Auyeung · P.C. Law

    No preview · Article · Nov 2010 · EJC Supplements

Publication Stats

41 Citations
16.73 Total Impact Points


  • 2011-2014
    • Hong Kong Baptist University
      • Centre for Cancer and Inflammation Research (CCIR)
      Chiu-lung, Kowloon City, Hong Kong